
Learn the Time to Learn: Replay Scheduling for Continual Learning
Marcus Klasson1, Hedvig Kjellström1, and Cheng Zhang2

1KTH Royal Institute of Technology, Stockholm, Sweden, 2Microsoft Research, Cambridge, UK

Motivation & Summary

•Companies in the real-world keep their historical data.
•Current CL approaches ignore the time to learn old tasks again.
•Education methods for humans often focus on scheduling of rehearsal
to enhance memory retention, e.g., spaced repetition [1].
•The time when replay is applied can influence the final performance
significantly (see Fig. 1).

1 2 3 4 5
0.7
0.8
0.9
1.0

Ac
cu
ra
cy

ACC: 91.12%
Task 1
Task 2
Task 3
Task 4
Task 5
Replay

1 2 3 4 5
0.7
0.8
0.9
1.0

ACC: 93.82%

1 2 3 4 5
0.7
0.8
0.9
1.0

Task Number

Ac
cu
ra
cy

ACC: 93.17%

1 2 3 4 5
0.7
0.8
0.9
1.0

Task Number

ACC: 91.56%

Figure 1: Task accs. on Split MNIST when replaying 10 examples of 0/1 at one time
step (black vertical line). ACC = avg. acc. over all tasks after learning Task 5.

•We introduce Replay Scheduling in CL as learning which tasks to
replay at different time steps.
•We apply Monte Carlo tree search (MCTS) [2] for learning replay
schedules by searching over a finite set of memory compositions.
•We demonstrate that learned scheduling can improve the CL
performance significantly with fixed size memory on four datasets.

Problem Setting

We assume that historical data is accessible but only a limited replay
memory can be used when the CL system adapts to novel data.
Goal: Schedule which tasks to replay at different times by
learning task proportions over the number of memory examples per task
to use.
Training Flow:
1: Initialize network θ0
2: θ1← Network θ0 learns dataset D1
3: Set historical data H2 = {D1}
4: for t = 2 : T do
5: SampleMt

M∼ Ht using selected task proportions (a1, ..., at−1)
6: θt+1← Network θt learns dataset Dt and replaysMt

7: Update historical data Ht+1 = [Ht;Dt]
We construct a discrete set of task proportions (a1, ..., at−1) to
enable searches for replay schedules. See example in Fig. 2.

Figure 2: An exemplar tree of memory compositionsMt from our proposed
discretization method for Split MNIST. The memory compositions are structured
according to the task where they can be replayed.

MCTS for Replay Scheduling

Essential Steps for MCTS Simulation:
1. SelectMt using UCT function when fully-expanded task level t.
2. SelectMt randomly when task level t has unvisited memory
compositions until reaching task T .

3. Train network with every selectedMt along path and backpropagate
reward for simulation of replay schedule.

0 250 500

0.97

0.98

0.99

AC
C

Split MNIST
ETS
RS-MCTS
BFS

0 100 200

0.97

0.98

0.99
Split FashionMNIST

0 100 200

0.92
0.94
0.96

Simulation

AC
C

Split notMNIST

0 100 200

0.70
0.71
0.72

Simulation

Split CIFAR-100

Figure 3: Schedules found with RS-MCTS improves significantly over ETS after 100
simulations. M=24 for first three datasets and M=285 for Split CIFAR-100.

Experimental Settings

•Replay Scheduling MCTS (RS-MCTS) is our method.
•Equal Task Schedule (ETS) involves using an equally distributed
amount of memory examples per task for replay.
•Ht contains M examples from the previous tasks, such that
|Ht| = M · (t− 1) before learning task t.

Experimental Results

8 24 80 120 200
0.95
0.96
0.97
0.98
0.99

AC
C

Split MNIST
ETS
RS-MCTS

8 24 80 120 200
0.90
0.92
0.94
0.96
0.98
1.00

Split FashionMNIST

8 24 80 120 200
0.88
0.90
0.92
0.94
0.96

Memory Size M

AC
C

Split notMNIST

95 285 475 950
0.60
0.65
0.70
0.75
0.80

Memory Size M

Split CIFAR-100

Figure 4: RS-MCTS performs significantly better than ETS for small M .

1 2 3 4 5
0.90

0.95

1.00

Task Number

Ac
cu
ra
cy

ETS (M=24)
Task 1
Task 2
Task 3
Task 4
Task 5

1 2 3 4 5
0.90

0.95

1.00

Task Number

RS-MCTS (M=24)

2 3 4 5
0

25
50
75
100

Task Number

Pr
op

or
tio

n
(%

)

Figure 5: Comparison of task accuracies on Split MNIST for ETS and RS-MCTS
(top) and task proportions at each task from RS-MCTS (bottom). The RS-MCTS
schedule manages to retain its performance on Task 2 better than ETS.

8 24 80 120 200

0.94

0.96

0.98

1.00

Memory Size M

AC
C

ETS + Random
RS-MCTS + Random
ETS + MoF
RS-MCTS + MoF
ETS + K-center
RS-MCTS + K-center

Figure 6: RS-MCTS improves over ETS on Split MNIST for different memory
selection methods, such as Random Selection (Random), Mean-of-Features (MoF),
and K-center Coreset (K-center).

References

[1] F. N. Dempster, “Spacing effects and their implications for theory and practice,”
Educational Psychology Review, vol. 1, no. 4, pp. 309–330, 1989.

[2] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,”
in International conference on computers and games, pp. 72–83, Springer, 2006.

