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Figure 1: Task accs. on Split MNIST when replaying 10 examples of 0/1 at one time
step (black vertical line). ACC = avg. acc. over all tasks after learning Task 5.
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Figure 6: RS-MCTS improves over ETS on Split MNIST for different memory

selection methods, such as Random Selection (Random), Mean-of-Features (MoF),
and K-center Coreset (K-center).

Figure 3: Schedules found with RS-MCTS improves significantly over ETS after 100

Training Flow:
a g rlo simulations. M =24 for first three datasets and M =285 for Split CIFAR-100.

. Initialize network 8,
. 01 < Network 0, learns dataset D,
- Set historical data Hy = {D; }

1

2 . .
3 Experimental Settings
4. fort =2 :7 do

5

6

[

References

e Replay Scheduling MCTS (RS-MCTS) is our method.

e Equal Task Schedule (ETS) involves using an equally distributed
amount of memory examples per task for replay.

Sample M; X H, using selected task proportions (i, ..., a;_1)
0,.1 < Network 0; learns dataset D, and replays M,
Update historical data H; 1 = [H;; D]

We construct a discrete set of task proportions (a4, ...,a; 1) to
enable searches for replay schedules. See example in Fig. 2.
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[ H;| = M - (t — 1) before learning task ¢.



