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ABSTRACT

We consider the over-fitting problem for multi-
nomial probabilistic Latent Semantic Analy-
sis (pLSA) in collaborative filtering using a
maximum a posteriori (MAP) approach based
on conjugate priors as regularization approach.
Our proposal ensure that complexity of each
step remains the same as compared to the un-
regularized method. In the numerical section, we
show that the regularization method and train-
ing scheme yields an improvement on commonly
used data sets, as compared to previously pro-
posed heuristics.

COLLABORATIVE FILTERING & PLSA
In recommender systems, Collaborative Filter-
ing (CF) is an approach where personalized rec-
ommendations are based on what products other
consumers with similar preferences have pur-
chased. We consider using the multinomial ver-
sion of pLSA, which is applicable to e.g. binary
and categorical data sets, to recommend movies.
The following notation is used

• Ratings ru,i stored in R ∈ Rm×n

• Set of users U = {u1, . . . , um}
• Set of items I = {i1, . . . , in}

We introduce latent states z ∈ {z1, . . . , zK} and
define the pLSA model

P (r|u, i; θ) =
∑
z

P (r|i, z)P (z|u).

The training algorithm for pLSA is Expectation-
Maximization (EM), which optimizes a lower
bound on the data log-likelihood.

The three main challenges with multinomial
pLSA in CF is

• Over-fitting

• Sparsity of the data

• Computational cost of the training

We generalize the model by introducing a con-
jugate prior on the parameters to mitigate over-
fitting and better handle the data sparsity.

GRID SEARCH RESULTS

Figure 1: Grid search over RMSE with respect to γu,z
and γi,r,z for K = 200.
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Figure 2: RMSE with respect to γu,z , different state sizes
K and γi,r,z = 1.0 and 1.5.

OPTIMIZATION SCHEME

The lower bound ` is formed by incorporating
variational probability distributions Q(z|D; θ)
to the log-likelihood, where D denotes the obser-
vations 〈u, i, r〉:

`(θ;D) =
∑
D

∑
z

Q(z|D; θ) log
P (r|i, z)P (z|u)
Q(z|D; θ)

.

In MAP estimation, we update the log-posterior
instead of the log-likelihood. The multinomial
distribution’s conjugate prior is the Dirichlet dis-
tribution, which is proportional to

P (θ) ∝
∏
z

∏
i,r

P (r|i, z)γi,r,z−1
∏
u

P (z|u)γu,z−1

 .

The bound we are optimizing is
logP (θ|D) = `(θ;D) + logP (θ),

by alternating between
E-step:

Q∗(z′|u, i, r; θ) = P (r|i, z′)P (z′|u)∑
z(P (r|i, z)P (z|u)

M-step:

P (z′|u′) =
∑
i,r Q

∗(z′|u′, i, r; θ) + (γu′,z′ − 1)∑
z

∑
i,r Q

∗(z|u′, i, r; θ) + (γu′,z − 1)

P (r′|i′, z′) =
∑
uQ
∗(z′|u, i′, r′; θ) + (γi′,r′,z′ − 1)∑

u,r Q
∗(z′|u, i′, r; θ) + (γi′,r,z′ − 1)

Note that setting γu,z = γi,r,z = 1 gives the stan-
dard EM algorithm.

HYPERPARAMETER SEARCH

We used grid searches for finding suitable prior
hyperparameters γu,z and γi,r,z by evaluating the
performance on RMSE. These hyperparameter
values are selected as

γ{·} = n{·} + 1,

where n can be interpreted as an additional set of
artificial data points to regularize the parameter
estimates. From Figure 1 we found that adjusting
γu,z for the latent states had better impact on de-
creasing the prediction error than γi,r,z . Figure 2
shows that multiple state sizes have the potential
of performing almost equally well for some of the
selected hyperparameter values.

NUMERICAL EVALUATION

Data sets: EachMovie and MovieLens 1M.

Metrics: RMSE and MAE.

Data sets were split with the leave-one-out
method. Rating r̂ given user u and unseen item
i was predicted with the expected value,

r̂u,i = E[r|u, i] =
∑
r

r
∑
z

P (r|i, z)P (z|u).

We compare the conjugate-prior-regularized
pLSA to a standard pLSA with an early stop-
ping (ES) condition and the Pop item-average
estimator.

NUMERICAL RESULTS

We used γu,z = 1.08, γu,z = 1.5 and K = 50 for
our proposed pLSA and K = 200 for pLSA with
ES in all experiments. We examined the meth-
ods with 10 cross-validations and averaging the
resulting prediction errors from each test set.

Iterations
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Figure 3: RMSE for training and test data from the
EachMovie data set over iterations. Dashed line shows
when the early stopping step occurs.

Proposed ES pLSA Pop

RMSE mean 1.2375 1.2727 1.3712
std 0.0064 0.0070 0.0062

MAE mean 0.9711 0.9834 1.0908
std 0.0047 0.0052 0.0048

Table 1: Mean and standard deviation of the prediction
error resulting from the EachMovie data set.

Proposed ES pLSA Pop

RMSE mean 0.9193 0.9781 0.9847
std 0.0076 0.0176 0.0090

MAE mean 0.7241 0.7807 0.7870
std 0.0049 0.0184 0.0057

Table 2: Mean and standard deviation of the prediction
error resulting from the MovieLens data set.

CONCLUSION

We have shown that conjugate-prior-regularized
pLSA counteracts over-fitting in CF setups with-
out increasing the computational complexity. For
future work we would analyze its performance in
an online CF setting and also other applications.


