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ABSTRACT

We consider the over-fitting problem for multi-
nomial probabilistic Latent Semantic Analy-
sis (pLSA) in collaborative filtering using a
maximum a posteriori (MAP) approach based
on conjugate priors as regularization approach.
Our proposal ensure that complexity of each
step remains the same as compared to the un-
regularized method. In the numerical section, we
show that the regularization method and train-
ing scheme yields an improvement on commonly
used data sets, as compared to previously pro-
posed heuristics.

COLLABORATIVE FILTERING & PLSA

In recommender systems, Collaborative Filter-
ing (CF) is an approach where personalized rec-
ommendations are based on what products other
consumers with similar preferences have pur-
chased. We consider using the multinomial ver-
sion of pLSA, which is applicable to e.g. binary
and categorical data sets, to recommend movies.
The following notation is used

e Ratings r, ; storedin R € R™*"

e SetofusersU = {uq,..., U}

e SetofitemsZ = {i1,...,0,}

We introduce latent states z € {z1,...,zx} and

define the pLSA model
P(rlu,i;0) =Y P(rli,z)P(z|u).

The training algorithm for pLSA is Expectation-
Maximization (EM), which optimizes a lower
bound on the data log-likelihood.

The three main challenges with multinomial
pLSA in CF is

e Over-fitting
e Sparsity of the data

o Computational cost of the training

We generalize the model by introducing a con-
jugate prior on the parameters to mitigate over-
fitting and better handle the data sparsity.

CONJUGATE-PRIOR-REGULARIZED MULTINOMIAL PLSA

FOR COLLABORATIVE FILTERING

GRID SEARCH RESULTS
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Figure 1: Grid search over RMSE with respect to v,

and v;  » for K = 200.

OPTIMIZATION SCHEME

The lower bound ¢ is formed by incorporating
variational probability distributions Q(z|D;6)
to the log-likelihood, where D denotes the obser-
vations (u, ¢, 7):

P(r|i, z)P(z|u)
0(0;D) = Q(z|D;0)lo .
0:0) =3 Qi log (s
In MAP estimation, we update the log-posterior
instead of the log-likelihood. The multinomial
distribution’s conjugate prior is the Dirichlet dis-
tribution, which is proportional to

) T T Pt T Pl

The bound we are optimizing is
log P(0|D) = £(0; D) + log P(6),
by alternating between
E-step:
P(r|i, 2" )P(2'|u)
2. (P(r]i, z) P(z|u)

Q" (' |u,i,7;0) =

M-step:
Pl |u) — D i Q*(Z’l%’,i,f; 0) + (Yur,2r — 1)
2z Qi @ (2, 0,73 0) + (yur 2 — 1)
Pl o) — u@ 150 + (e = 1)

B Zu,r Q* (2 |u, ¢, 7m;0) + (Vir ror — 1)
Note that setting v,, . = v;.». = 1 gives the stan-
dard EM algorithm.
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Figure 2: RMSE with respect to ., ., different state sizes
K and ~; . = 1.0 and 1.5.

HYPERPARAMETER SEARCH

We used grid searches for finding suitable prior
hyperparameters v, . and ; , . by evaluating the
performance on RMSE. These hyperparameter
values are selected as

Yy =nga + 1
where n can be interpreted as an additional set of
artificial data points to regularize the parameter
estimates. From Figure 1 we found that adjusting
Yu.» for the latent states had better impact on de-
creasing the prediction error than +; , .. Figure 2
shows that multiple state sizes have the potential
of performing almost equally well for some of the
selected hyperparameter values.

NUMERICAL EVALUATION

Data sets: EachMovie and MovielLens 1M.
Metrics: RMSE and MAE.

Data sets were split with the leave-one-out
method. Rating 7 given user u and unseen item
i was predicted with the expected value,

Fu.i = Elr|u, 1] = ZTZP(TH, 2)P(z|u).

We compare the conjugate-prior-regularized
pLSA to a standard pLSA with an early stop-
ping (ES) condition and the Pop item-average
estimator.
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NUMERICAL RESULTS

We used v, , = 1.08, v, ., = 1.5 and K = 50 for
our proposed pLSA and K = 200 for pLSA with
ES in all experiments. We examined the meth-
ods with 10 cross-validations and averaging the
resulting prediction errors from each test set.
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Figure 3: RMSE for training and test data from the

EachMovie data set over iterations. Dashed line shows

when the early stopping step occurs.

Proposed | ES pLSA | Pop
mean 1.2375 1.2727 1.3712
RMSE std 0.0064 0.0070 | 0.0062
MAE ~nean 0.9711 0.9834 | 1.0908
std 0.0047 0.0052 | 0.0048

Table 1: Mean and standard deviation of the prediction
error resulting from the EachMovie data set.

Proposed | ES pLSA | Pop
mean | 0.9193 0.9781 | 0.9847
RMSE std 0.0076 0.0176 | 0.0090
MAE ean 0.7241 0.7807 | 0.7870
std 0.0049 0.0184 | 0.0057

Table 2: Mean and standard deviation of the prediction
error resulting from the MovieLens data set.

CONCLUSION

We have shown that conjugate-prior-regularized
pLSA counteracts over-fitting in CF setups with-
out increasing the computational complexity. For
future work we would analyze its performance in
an online CF setting and also other applications.



