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To my mother,

the most important

person in my life





You know, man, when I was a young man in high school
You believe it or not, I wanted to play football for the coach
And all those older guys
they said that he was mean and cruel, but you know
I wanted to play football for the coach

LOU REED - CONEY ISLAND BABY (1975)
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Abstract

In recent years, computer vision-based assistive technologies have enabled visu-
ally impaired people to use automatic visual recognition on their mobile phones.
These systems should be capable of recognizing objects on fine-grained levels to
provide the user with accurate predictions. Additionally, the user should have
the option to update the system continuously to recognize new objects of inter-
est. However, there are several challenges that need to be tackled to enable such
features with assistive vision systems in real and highly-varying environments.
For instance, fine-grained image recognition usually requires large amounts of
labeled data to be robust. Moreover, image classifiers struggle with retaining
performance of previously learned abilities when they are adapted to new tasks.
This thesis is divided into two parts where we address these challenges. First,
we focus on the application of using assistive vision systems for grocery shop-
ping, where items are naturally structured based on fine-grained details. We
demonstrate how image classifiers can be trained with a combination of nat-
ural images and web-scraped information about the groceries to obtain more
accurate classification performance compared to only using natural images for
training. Thereafter, we bring forward a new approach for continual learning
called replay scheduling, where we select which tasks to replay at different times
to improve memory retention. Furthermore, we propose a novel framework for
learning replay scheduling policies that can generalize to new continual learning
scenarios for mitigating the catastrophic forgetting effect in image classifiers.
This thesis provides insights on practical challenges that need to be addressed
to enhance the usefulness of computer vision for assisting the visually impaired
in real-world scenarios.
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Sammanfattning

De senaste åren har teknologiska hjälpmedel baserade p̊a datorseende möjliggjort
för synskadade personer att använda sig av automatisk visuell igenkänning p̊a
deras mobiltelefoner. Dessa system bör kunna känna igen objekt p̊a finfördelade
niv̊aer för att förse användaren med noggranna prediktioner. Användaren bör
även ha möjligheten att uppdatera systemet kontinuerligt till att känna igen
nya objekt av intresse. Dock finns det flera utmaningar som behöver avklaras
för att aktivera dessa funktioner i synhjälpmedelssystem i reella och mycket
varierande miljöer. Exempelvis behöver finfördelad bildigenkänning vanligtvis
stora mängder märkt data för att vara robust. Dessutom har bildklassificerare
besvär med att beh̊alla sin prestanda av tidigare inlärda förmågor när de an-
passas till nya uppgifter. Denna avhandling är uppdelad i tv̊a delar, där vi tar
oss an dessa utmaningar. Först fokuserar vi p̊a tillämpningen av att använda
synhjälpmedelssystem för att handla matvaror, där varorna är naturligt struk-
turerade enligt finfördelade detaljer. Vi p̊avisar hur bildklassificerare kan tränas
med en kombination av naturliga bilder och webbskrapad information om mat-
varorna för att erh̊alla mer träffsäker klassificeringsförmåga jämfört med att
enbart använda naturliga bilder för träning. Därefter lägger vi fram ett nytt
tillvägag̊angssätt för kontinuerlig inlärning som kallas replay scheduling (repris-
schemaläggning), där vi väljer vilka uppgifter som ska repeteras vid olika tid-
punkter för att förbättra bibeh̊allande av minnen. Vi föresl̊ar även ett nytt
ramverk för inlärning av policyer för replay scheduling som kan generalisera till
nya scenarion för kontinuerlig inlärning för att mildra effekten av katastrofal
glömska i bildklassificerare. Denna avhandling ger insyn till praktiska utma-
ningar som behöver lösas för att förbättra användbarheten hos datorseende till
att hjälpa synskadade personer i verkliga scenarier.
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Chapter 1

Introduction

Vision is probably the most important of all senses that humans possess. Our society
is built on having the ability to see. For example, if we want to cross a street, thick
colored stripes on the road and signs above our heads indicate where the cross walk
is located in order for us to cross the street appropriately. Another example is how
we use text to communicate with each other, where messages that we read and
write consist of sequences of symbols that are structured into words of some specific
language. Furthermore, visuals are used frequently in education to help students
comprehend new information and concepts. Basically, many everyday tasks such as
traveling, communication, and learning become more convenient with normal vision.

Millions of people have visual impairments that cannot be treated with correctable
eyewear [1]. To enhance the mobility of visually impaired (VI) people, there exist
various kinds of assistive tools, such as screen readers and Braille typewriting ma-
chines, for supporting them with receiving information and communicating through
text. More recently, several assistive vision technologies have emerged in the form of
mobile phone applications [2–7] and wearable devices [8–10]. Furthermore, several
works in computer vision research has been specifically focused developing methods
for assisting VI people with, e.g., visual recognition [11–18] and wayfinding [19–24].

Despite the recent advances in deep learning for computer vision [25–29], several
challenges have been demonstrated when deploying computer vision models in real-
world scenarios. For example, the models may surprisingly fail to recognize known
objects appearing in new poses [30], lighting conditions [31], and geographical loca-
tions [32], models trained on images from one set of hospitals may perform poorly
on image conditions from another [33], and models can suffer from biases that dis-
advantage certain users based on their gender and ethnicity [34]. Part of the reason
for these challenges is that specifying a model that can be injected with the rich
complexity of the real world is difficult [35]. To enhance their applicability in the
real-world, researchers are striving for developing computer vision models that can
recognize objects in detail [36], learn new abilities continuously [37, 38], and adapt
fast to new scenarios from few examples [39–41]. Furthermore, such tasks should be
possible to execute in a time-efficient and robust manner in assistive vision devices
to improve the user experience.

In this thesis, we address challenges on computer vision models for recognizing
objects and their fine-grained details, as well as continually adapting the models to
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6 CHAPTER 1. INTRODUCTION

new concepts while retaining its previously learned knowledge. We will continue
this chapter by briefly describing visual impairments in Section 1.1, followed by a
summary of assistive vision technologies in Section 1.2. Section 1.3 describes the
scope of the thesis, and we summarize the contributions of the included papers in
Section 1.4. In Section 1.5, we present the overall outline of this thesis.

1.1 Visual Impairments

A visual impairment is defined as the decrease of an individual’s ability to see from
various distances [42]. The conditions varies from having issues with seeing from
far or near distances to blindness, i.e., complete or nearly-complete vision loss. Vi-
sual capabilities are in general assessed by measuring the visual acuity (sharpness)
of seeing from some fixed distance, e.g., letters of different size on an eye chart.
The visual acuity is measured differently based on whether near- or far-sighted VI
people are being assessed. For far-sighted VI people, visual acuity is calculated by
the ratio between the distance that the subject and a normal-sighted person can
recognize the target object. For near-sighted VI people, visual acuity is measured
using a standardized point system defining the font size of letters that the subject
can recognize [43].

In 2020, it was estimated that 338 million people possess a moderate to severe
visual impairment globally, including 43 million people that are blind [1]. Further-
more, the World Health Organization (WHO) have estimated that at least 2.2 billion
people live with a near or distance visual impairment, where at least 1 billion cases
could have been prevented or yet has to be addressed [43]. The number of untreated
cases is projected to be 1.7 billion people by 2050, mainly due to global population
growth as well as increased aging among the populations [1]. The main causes for
having vision loss are uncorrected refractive errors, untreated cataracts, age-related
macular degeneration, glaucoma, diabetic retinopathy, where 90% of such cases are
preventable and treatable [44]. These causes also varies between different countries
and regions with different socioeconomic status.

There exists many kinds of tools for assisting VI people with everyday tasks. The
white cane and guiding dogs are probably the most common tools for enhancing their
mobility by preparing the user for what is present in their near surroundings. Further-
more, there are different tools for various visual recognition tasks, such as currency
markers for identifying different bills in wallets, color indicators for notifying the user
of the color of clothes, and labeling apparatus with Braille writing for distinguishing
between similar items [45]. There also exist Braille keyboards and screen readers
compatible with both computers and mobile phones for helping VI people with e.g.
sending text messages and emails, surfing the web, and using calendar apps [46]. In
the next section, we introduce a selection of assistive vision technologies aimed for
assisting VI people with recognition of objects in their environment.

1.2 Assistive Vision Technologies

Cameras are used by blind people to record events and memories similarly as people
with normal vision [47]. Moreover, there is an urge among VI people to use their
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cameras for daily tasks other than recording events, such as object recognition [48],
face recognition [49], and currency identification [50]. In this thesis, we focus on
object recognition which can be challenging in many ways without visual information.
For instance, VI people may need assistance from non-visual cues indicating how to
capture the whole item in the camera view [51], and also may need to point the
camera towards some specific side of the object to identify details of interest to the
user. These challenges have encouraged the development of technical aids that use
computer vision for assisting VI people which we will cover next.

In the last decade, we have seen several variants of assistive vision technologies
emerging on the market. The advances of such technologies have made it possible for
VI people to reduce the need for human assistance for performing daily tasks where
vision is a necessity. Currently, these devices have taken the form of both mobile
phone applications [2–5] and wearable devices [8–10] where computer vision methods
are used for visual tasks, such as object and face recognition, barcode scanning, color
and currency identification, and text recognition. An alternative to the computer
vision-based technologies are other mobile phone apps where VI users have video
calls with sighted volunteers that help them with any kind of task requiring visual
capabilities [6, 7].

Despite the increased availability of assistive vision technologies, there are still
several challenges remaining to be tackled in order to enhance the user experience.
Although machine learning techniques have been successfully applied in computer
vision applications such as object recognition [25, 26, 52], generating scene descrip-
tions [28, 29, 53], and visual question answering [54–56], these methods require im-
mense amounts of human-annotated data for providing accurate predictions. The
annotation becomes even more labor-intensive in scenarios where the assistive vision
system must distinguish between objects with subtle differences, making it challeng-
ing to provide users with more detailed information than the general object class.
Another challenge is how to continuously adapt the system to recognize new objects
while ensuring that the system is still capable of classifying previous known items
correctly. Furthermore, assistive vision technologies need system requirements to
provide better usability, where the system should process images in real-time, be
robust when applied in new environments, as well as ensuring privacy for the user.

1.3 Scope of Thesis

This thesis focuses on two topics for machine learning and computer vision-based as-
sistive technologies, namely fine-grained image recognition (FGIR) [36] and continual
learning (CL) [37, 38]. The FGIR task involves identifying visually similar subcat-
egories of some general object classes. An example is when one has to distinguish
between two kinds of visually similar juice packages with different ingredients. In Pa-
per A and B, we study FGIR from the real-world application of recognizing groceries
from mobile phone with an assistive vision app. The CL setting targets the scenarios
where a classifier receives data from new object classes to learn from a continuous
stream, while retaining its capability of recognizing previously learned objects. In
Paper C and D, we introduce a novel approach for improving the retention of pre-
viously learned abilities of the classifier. The common denominator of these topics
is image classification, However, both have challenges of their own that have to be
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addressed for enabling such adding such features into assistive vision technologies.
Next, we describe the challenges that we have focused on in this thesis.

Challenges in Fine-Grained Image Recognition

One main challenge for FGIR is the required data collection procedure. Firstly, an-
notating the specific details about the objects in the collected data becomes more
time-consuming for the annotators, and may also require expert knowledge of the
domain. Secondly, as some fine-grained classes could be rare, the dataset may be
unbalanced making it difficult for the classifier classify the rare classes accurately
from only a few training samples. A real-world application for helping VI people
using assistive vision technologies that contains both of these challenges is grocery
shopping [12,57–62]. Grocery items usually require visual information to distinguish
between them, e.g., when distinguishing between two juice packages of the same
shape but with different ingredients. Similarly for raw groceries, it can be difficult
to tell the difference between two different kinds of apples without the ability to see,
unless the customer knows how the apples smell or how the texture of their peel
differs when touching them. Furthermore, the conditions of the grocery store envi-
ronment can disturb the recognition performance for computer vision-based assistive
devices, e.g., when multiple and misplaced items appear in the camera view as well
as poor lighting conditions in particular areas. Collecting training data that covers
all possible scenarios that can occur in the store would be a nearly impossible task.
Our goal is to reduce the need for large amounts of training data in the grocery stores
by collecting web-scraped information about the items to utilize when training the
image classifier.

Challenges in Continual Learning

The main challenge in CL is catastrophic forgetting [63] where the classifier over-
writes previously learned knowledge with information about recently learned objects.
Replay-based CL [37,38] is a simple yet efficient approach for mitigating catastrophic
forgetting where samples from old classes are stored in a small memory which can
be re-trained on when learning new classes. In contrast to the small memory re-
quirement, many machine learning systems in real-world applications are limited by
constraints on processing times rather than data storage capacity [64–66]. In such
settings, retraining on all seen data is often prohibited, the system would need a
method for selecting what data to replay from a huge amount of stored data to miti-
gate catastrophic forgetting. Motivated by human learning techniques for improving
memory retention [67–71], we propose a novel approach called replay scheduling
where we have policy for selecting which tasks to replay at different times. Our goal
is to demonstrate that scheduling over which tasks to replay can be crucial for CL
systems in settings where immense amounts of historical data is accessible. To enable
our approach in real-world CL scenarios, we need to develop efficient methods that
can propose replay schedules to mitigate catastrophic forgetting in new CL scenarios
without additional computations.
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Table 1.1: Two examples of grocery item classes in the dataset presented in Paper A. We display
the class label (coarse-grained class in parenthesis), two natural images taken with a mobile phone
inside grocery stores, and the web-scraped iconic image and text description of the items.

Class

Labels

Natural

Images

Iconic

Images

Text

Descriptions

Granny Smith

(Apple)

“...green apple with white, firm pulp
and a clear acidity in the flavor.”

Tropicana

Mandarin

(Juice)

“. . . is a ready to drink juice
without pulp pressed on orange,
mandarin and grapes. Not from

concentrate. Mildly pasteurized.”

1.4 Thesis Contributions

In this section, we provide summaries of the included papers as well as stating the
contributions of each author to the manuscripts.

Paper A: A Hierarchical Grocery Store Image Dataset with
Visual and Semantic Labels

Marcus Klasson, Cheng Zhang, Hedvig Kjellström. In IEEE Winter Confer-
ence on Applications of Computer Vision (WACV) 2019.

Summary: We collect a dataset with natural images of raw and refrigerated gro-
cery items taken in grocery stores in Stockholm, Sweden, for evaluating image clas-
sifiers on a challenging real-world scenario. The data collection was performed by
taking photos of groceries with a mobile phone to simulate a scenario of grocery
shopping using an assistive vision app. Furthermore, we downloaded iconic images
and text descriptions of each grocery item by web-scraping a grocery store website
to enhance the dataset with information describing the semantics of each individual
item. The items are grouped based on their type, e.g., apple, juice, etc., to provide
the dataset with a hierarchical labeling structure. We show two examples of gro-
cery item classes and their corresponding web-scraped information in Table 1.1. We
provide benchmark results evaluated using pre-trained and fine-tuned convolutional
networks for image classification.

Author Contributions: CZ and HK presented the idea and the data collection
procedure for the natural images and web-scraped information. MK performed the
data collection including visiting the grocery stores for taking the natural images and
the web-scraping of the grocery store website for iconic images and text descriptions.
MK performed all the experiments and wrote most of the text. All authors took part
in discussing the results and contributed to writing the manuscript.
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Paper B: Using Variational Multi-View Learning for Classification
of Grocery Items

Marcus Klasson, Cheng Zhang, Hedvig Kjellström. In Patterns, Volume 1(8)
(2020).

(a) VAEx (b) VCCAxiwy

Figure 1.1: Visualizations of the latent rep-
resentations projected in 2D space with PCA
from models VAEx and VCCAxiwy , where
we plot the corresponding iconic image for
each latent representation. We observe that
VCCAxiwy structures the items based on vi-
sual similarities by incorporating the web-
scraped information into the learning.

Summary: We investigate whether
training image classifiers benefits
from combining the natural images
and web-scraped information in the
Grocery Store dataset from Paper A.
We employ a deep generative model
called Variational Canonical Correla-
tion Analysis (VCCA) [72] for learn-
ing joint representations of the differ-
ent data views, i.e., natural images,
iconic images, and text descriptions,
that are used for training the classi-
fiers. We performed a thorough ab-
lation study over all data views to
demonstrate how they contribute individually to enhancing the classification per-
formance. Our results show that the iconic images help to group the items based on
their color and shape while text descriptions separate the items based on differences
in ingredients and flavor. Figure 1.1 shows visualizations of the latent representations
learned by a variational autoencoder (VAE) [73] and VCCA. Finally, we concluded
that utilizing the iconic images and text descriptions yielded better classification
results than only using natural images.

Author Contributions: CZ and HK presented the idea and all authors con-
tributed to formalizing the methodology. MK performed all the experiments, created
the visualizations, and wrote most of the text. All authors took part in discussing
the results and contributed to writing the manuscript.

Paper C: Learn the Time to Learn: Replay Scheduling for
Continual Learning

Marcus Klasson, Hedvig Kjellström, Cheng Zhang. Unpublished manuscript.

Summary: We present a slightly altered CL setting where the historical data is
accessible at any time to mitigate catastrophic forgetting. However, retraining the
CL system from all historical data is prohibitive due to constraints on processing
times. To this end, we propose to learn the time to learn for a CL system, in which
we learn schedules over which tasks to replay at different times. Figure 1.2 illus-
trates the differences between our replay scheduling approach and the traditional
replay approach in CL. We study the benefits of replay scheduling by allowing mul-
tiple episodes in the CL environment to enable searches for efficient replay schedules
using Monte Carlo tree search. We show that the replay schedules from MCTS can
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(a) The traditional replay approach. (b) Our replay scheduling approach.

Figure 1.2: Illustrations of the (a) traditional replay approach where an equal amount of old samples
in a small memory buffer are replayed at every time, and (b) our replay scheduling approach from
Paper C where the scheduler selects which tasks to replay by selecting samples from the stored
previously seen datasets.

significantly improve the performance compared to baselines with scheduling policies.
We conclude that learning the time to replay different tasks can be critical for the
performance of replay-based methods in our new proposed CL setting.

Author Contributions: CZ presented the idea, and MK and CZ contributed
to formalizing the methodology. MK performed all the experiments, created the
visualizations, and wrote the text. All authors took part in discussing the results
and contributed to writing the manuscript.

Paper D: Policy Learning for Replay Scheduling in Continual
Learning

Marcus Klasson, Hedvig Kjellström, Cheng Zhang. Unpublished manuscript.

Summary: To enable replay scheduling in real-world CL scenarios, we propose
a reinforcement learning-based framework for learning replay scheduling policies.
Figure 1.3 illustrates the pipeline of our framework. Our intuition is that there may
exist general patterns regarding the replay scheduling, e.g., tasks that are harder or
have been forgotten should be replayed more often. Therefore, we define the state as
the validation performance of the classifier, which is passed to the policy that selects
actions for how to compose the replay memory to efficiently mitigate catastrophic
forgetting. Our framework enables learning policies that can generalize to new CL
scenarios without additional computational cost or training in the test environment.
In the experiments, we show that the learned policies can generalize to CL scenarios
with new task orders and datasets unseen during training.

Author Contributions: CZ presented the idea, and MK and CZ contributed
to formalizing the methodology. MK performed all the experiments, created the
visualizations, and wrote most of the text. All authors took part in discussing the
results and contributed to writing the manuscript.
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Figure 1.3: Illustration over our policy learning framework for replay scheduling proposed in Paper
D. The policy πθ receives state st of the classifier fφ to select action at determining how the replay
memory Mt should be constructed. Dark gray-shaded box means that classifier is in evaluation
mode.

1.5 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 provides some preliminaries
on deep learning methods in computer vision that we used in this thesis. Chapter
3 is focused on our contributions in FGIR where we summarize Paper A and B on
grocery item classification with an assistive vision app. Similarly, in Chapter 4, we
focus on our contributions in CL and summarize the content in Paper C and D on
our proposed replay scheduling approach in CL. Finally, in Chapter 5, we provide
our conclusions of the presented works and present some potential research directions
that we believe could be interesting to look deeper into in future research on computer
vision-based assistive technologies.



Chapter 2

Background

In this chapter, we provide an overview of the preliminaries for comprehending the
methodology in the included papers in this thesis. We assume that the reader has
some basic knowledge in calculus, linear algebra, and probability theory. Section
2.1 gives an introduction to machine learning, including different problem settings,
some terminology, as well as the notation that will be used throughout this thesis.
In Section 2.2, we give an overview of deep learning [74], where we cover the different
types of network architectures that has been used in the thesis, as well as a brief
introduction to deep reinforcement learning.

2.1 Problem Settings in Machine Learning

Machine learning tasks can be divided into three main fields, namely, supervised
learning, unsupervised learning, and reinforcement learning (RL). In this section, we
will give a brief introduction to these topics to provide some context on the challenges
that we are addressing in this thesis.

We will begin by introducing some algebraic notation that will be used throughout
this thesis. For representing data, we use the vector x which is a column vector

x = [x1, . . . , xD]T ,

where xi for 1 ≤ i ≤ D is the i-th scalar, real-valued feature of the data vector, and
the superscript T transposes the row vector into a column vector. In some cases,
each data vector x have an assigned class label y which is an integer number. Scalars
can hence both represent real values and integers. The data vector x will often
represent a 2-dimensional image, where each feature xi is a pixel. In this thesis, we
still however denote images as column vectors in our equations for simplicity.

We assume that the data follows some underlying distribution, pdata(x), usually
referred to as the data generating distribution. In machine learning, we are often
interested in approximating pdata with a distribution pθ(x) parameterized by θ given
a finite dataset D = {x(i)}Ni=1 of N samples where x(i) ∼ pdata(x). Estimating the
parameters θ from the dataset D is called the training phase. A central goal for most
applications in machine learning is to make predictions on new data which is called
generalization. We measure the generalization capability by evaluating the task of
interest on a held-out dataset during the test phase.

13
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Supervised Learning. In this setting, we are given a dataset {(x(i), y(i))}Ni=1

where each data point x(i) is accompanied with a target y(i). In classification prob-
lems, the target y ∈ {1, . . . , C} belongs to one of C discrete categories, while in
regression problems, the targets y ∈ R are continuous and real-valued. The goal is to
estimate pθ(y|x) which is the probability of assigning the target y given data x. We
represent pθ(y|x) = fθ(x) with the parameterized function fθ(x) which maps data
x to target variables y.

Unsupervised Learning. The goal in the unsupervised setting is to reveal hid-
den structures in the given dataset {x(i)}Ni=1 without access to target variables. For
example, we might be interested in estimating the data generating distribution pdata
with pθ (as mentioned above), discovering groups of similar data points using clus-
tering techniques, or projecting high-dimensional data into two or three dimensions
for visualization purposes.

Reinforcement Learning. For these problems, we have a learning agent that
performs actions based on perceived states of the environment to reach some specific
goal represented by a reward signal r. An example of such a task is the Mountain
Car problem [75] where the agent tries to drive a car over the top of a hill. The
action selection is modeled by the policy πθ(a|s) which is a mapping from states s
to actions a. The goal for the agent is to learn a policy that maximizes the reward
within a specified time limit.

2.2 Deep Learning

In this section, we give an introduction to deep learning [74] which is a family of
machine learning methods used in this thesis. Deep learning methods are capable of
learning tasks from large and high-dimensional datasets thanks to larger volumes of
available training data, more efficient machine learning algorithms, and advances in
computer hardware in the last decades. A deep learning architecture is constructed
by stacking layers of non-linear mapping functions that give intermediate representa-
tions of the input data, where the last layer usually outputs a predicted target answer
from the queried input. This approach has been successfully applied in various num-
ber of fields such as computer vision [25, 26], natural language processing [76], and
reinforcement learning [77,78].

Deep networks are most commonly optimized using the Stochastic Gradient De-
scent (SGD) algorithm. This procedure uses gradients of a loss function L(fθ(x),y)
with respect to every parameter to perform the update step

θ = θ − η∇θL(fθ(x),y), (2.1)

where η is the learning rate which determines how much the weights should be
updated with the computed gradient. Common loss functions L are the cross-entropy
loss for classification and the mean-squared error for regression tasks. The gradients
are computed using the backpropagation algorithm [79] which estimates the gradients
iteratively one layer at a time, going back and forth. To improve the computational
efficiency, the mapping function parameters are estimated from the average of the
gradients from a randomly sampled mini-batch of data.
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Inputs Conv1 Pooling1 Conv2 Pooling2 FC Outputs

Figure 2.2: Simple CNN architecture with two convolutional layers (Conv) for extracting feature
maps, two subsampling layers performing a pooling operation (Pooling), and one fully-connected
layer (FC) to produce the network output. Figure inspiration from https://davidstutz.de/
illustrating-convolutional-neural-networks-in-latex-with-tikz/.

Many innovations have been designed in recent years to stabilize the training of
deep neural network architectures. For instance, dropout [80] is used for mitigating
overfitting to the training data by randomly making some layer outputs passive to
encourage the parameters to take more (or less) responsibility for the inputs. Batch
normalization [81, 82] normalizes the layer inputs to enable faster and more stable
learning. Residual connections [26] eases training networks with hundreds of layers
by mitigating the degradation problem, where adding more layers resulted in higher
training error. Furthermore, various adaptive learning rate optimizers [83–85] for the
SGD updates, learning rate schedulers [86], and network initializations [87, 88] have
been proposed to enable more efficient training. We refer the reader to the provided
references for the details on these techniques. Next, we will describe three popular
types of neural networks that have been applied in the experiments of this thesis,
namely, multilayer perceptrons (MLPs), convolutional neural networks (CNNs), and
recurrent neural networks (RNNs).
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Figure 2.1: Illustration of MLP
with two hidden layers.

Multilayer Perceptrons. The simplest form
of feedforward neural networks is the MLP based
on the Perceptron [89]. Basically, MLPs con-
sist of multiple hidden layers performing matrix
multiplication to extract intermediate represen-
tations of the input. Each matrix multiplication
is followed by an activation function, such as the
Rectified Linear Unit (ReLU) activation, which is
an essential step for enabling neural networks to
learn non-linear functions. Figure 2.1 shows an il-
lustration of an MLP with two hidden layers. The
edges between two columns of units represent the
matrix multiplication where each edge corresponds to a parameter in the network.
The hidden layers are often called fully-connected layers in MLPs.

Convolutional Neural Networks. Convolutional layers consist of a set of fil-
ters defined by adaptable parameters to capture relationships between neighboring
features in the data [90]. Extracting the feature representations from one layer cor-
responds to convolving the input data with all filters, where the parameters in each
filter are shared across every spatial location of the input. This design choice enables
each filter to extract important features at any position in the data. Furthermore,
parameter sharing also reduces the amount of parameters in the network and lowers
the number of operations for computing the outputs. Figure 2.2 shows an illustra-

https://davidstutz.de/illustrating-convolutional-neural-networks-in-latex-with-tikz/
https://davidstutz.de/illustrating-convolutional-neural-networks-in-latex-with-tikz/
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tion of a CNN architecture. Each filter slides across the width and height of the
input to compute dot products between the filter weights and the local input region
to produce a 2-dimensional feature map. The feature maps from all filters are then
stacked depth-wise to obtain the output volume, which are often subsampled along
their spatial dimensions with a pooling operation after a non-linear activation func-
tion. The feature maps in the last subsampling layer are flattened and fed into an
arbitrary number of fully-connected layers (an MLP) to produce the final output.

xt−1 xt xt+1

ht−1 ht ht+1 . . .

Figure 2.3: Graphical representation
of RNN.

Recurrent Neural Networks. RNNs are a
family of neural network models specialized for
processing sequences of data. These networks
predicts the next output given the past sequence
and uses an extension of backpropagation to com-
pute gradients across different time steps. Similar
to CNNs, RNNs apply parameter sharing across
time steps to enable extracting relevant informa-
tion that can appear at different positions in the sequence. RNNs makes an assump-
tion that all relevant information about the past sequence x1:t−1 can be summarized
in a hidden state ht. The state evolves over time through the update equation
ht = fθ(ht−1,xt−1) where fθ is a neural network for capturing the long-term de-
pendencies. Common choices for this network are the Long Short-Term Memory
(LSTM) [91] and Gated Recurrent Unit (GRU) [92] which use gating functions for
determining what information is relevant for the future time steps. Figure 2.3 shows
a graphical representation of an RNN. The initial hidden state h0 is usually set to
zero or learned.

Attention-based network architectures, such as Transformers [52,93] and Graph Neu-
ral Networks [94,95], are not covered in this thesis; we refer the reader to the provided
references for information on these networks.

Deep Autoencoders

x
Encoder

gφ(x)
z

Decoder

fθ(z)
x̂

Figure 2.4: Illustration of an autoen-
coder network.

A common network architecture for learning
latent representations of high-dimensional data
in unsupervised fashions with deep learning are
autoencoders. These architectures are typi-
cally built using two networks called decoder fθ
and encoder gφ with a bottleneck layer between
the networks that extracts a low-dimensional
representation z of the data x. The idea is that the learned representation z should
contain enough relevant information for reconstructing the input data. Figure 2.4
shows an illustration of an autoencoder network. The encoder extracts the latent
representation with z = gφ(x), while the decoder aims to reconstruct the original in-
put, such that x̂ = fθ(z) where x̂ ≈ x. There exist various autoencoder approaches
for improving the quality of the learned representations. For example, denoising au-
toencoders [96] adds noise to the input data to avoid overfitting, and sparse autoen-
coders [97] induces adds sparsity constraints on the activation functions to improve
robustness.
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Figure 2.5: Illustration of a multimodal autoencoder
network for learning a joint representation z from the
different but related data types x and y. The joint rep-
resentation z is obtained by combining the intermediate
representations hx and hy .

Multimodal Autoencoders.
Autoencoders can easily be ex-
tended to handling multiple
types of data. The goal here is
usually to learn one joint latent
representation for capturing cor-
respondences between the data
types [98]. Consider the multi-
modal dataset D = {(xi,yi)}Ni=1

where x and y originate from
two different data views (real-
world images, web images) or
modalities (visual signals, text
descriptions) that share some
high-level information. For ex-
ample, x could be an image of a living room and y is a text sentence describing the
appearance of the room, where objects are located etc. Figure 2.5 shows an illus-
tration of the network architecture. The input x and y have two separate encoders,
gφx(x) and gφy (y), that extracts the intermediate latent representations hx and
hy respectively. The intermediate representations are then combined into the joint
latent representation z, often through some element-wise operation (addition, mul-
tiplication) or concatenation. The joint multimodal representation z is then passed
through two separate decoder networks, fθx(z) and fθy (z), for predicting the orig-
inal input data separately. Combining different modalities, such as images, natural
language, and audio signals, with autoencoders for learning more rich representa-
tions of data has been studied frequently the last decade [98–103] One advantage
is that the network architecture can be trained in an trained end-to-end fashion to
be used for both learning representations and making predictions of the used data
types. However, a major challenge is how to handle scenarios where some data types
could be missing. An option here is to learn a joint representation by using a single
encoder for the data type that is available at both training and test phases that is
used for predicting each data type [99].

Variational Autoencoders

In this section, we give an overview of the variational autoencoder (VAE) [73,104] that
we apply for representation learning in Paper A and B. The VAE is a deep generative
model that enable learning of data representations by combining ideas from deep
learning and probabilistic graphical models [105]. As commonly done in unsupervised
learning, VAEs aim to learn a parametric distribution pθ(x) that approximates the
data distribution pdata given a dataset D = {x(i)}Ni=1 where x(i) ∼ pdata. We frame
the problem of learning pθ(x) by expressing the distribution using latent variables
z, such that

pθ(x) =

∫
pθ(x, z) dz =

∫
pθ(x|z)p(z) dz, (2.2)

where the joint distribution pθ(x, z) is the model which factorizes into the likelihood
pθ(x|z) and the prior distribution p(z) for the latent variables. The latent variables z
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are introduced for representing underlying structures and relationships in x that can
be difficult to observe from the data itself. We can view z as containing meaningful
information for the data generation process by assuming that the data was generated
with the following steps:

1. sample the latent vector z ∼ p(z) from the prior.
2. generate data point x ∼ pθ(x|z) given the sampled z.

The Evidence Lower Bound. The problem with learning the parameters θ that
maximize pθ(x) is that the integral in Equation 2.2 is almost always intractable due
to the prohibitively large number of values for z that need to be evaluated. Instead,
we can reformulate the problem using Bayes’ rule

pθ(x) =
pθ(x|z)p(z)

pθ(z|x)
, (2.3)

where pθ(z|x) is the posterior of z given x and pθ(x|z) is the likelihood of x given z.
The posterior needs to be approximated using variational inference [106,107], where
we define an approximate posterior distribution qφ(z|x) parameterized by φ to infer
the latents z. This allows us to form a lower bound on the marginal log-likelihood
log pθ(x) given by

log pθ(x) ≥ Ez∼qφ(z|x)[log pθ(x|z)]−DKL[qφ(z|x) || p(z)], (2.4)

which is called the evidence lower bound (ELBO). The expected value over log pθ(x|z)
can be estimated with Monte Carlo sampling using qφ(z|x), and the Kullback-Leibler
(KL) divergence between qφ(z|x) and p(z) can be computed analytically depending
on how we choose these distributions. Commonly, the approximate posterior is se-
lected to be a Gaussian distribution qφ(z|x) = N (z;µφ(x),diag(σφ(x))) where the
parameters φ are used for computing the mean µφ(x) and standard deviation σφ(x)
of the approximate posterior given x, and diag(·) is for constraining the covariance
matrix to be a diagonal matrix. The prior distribution is also selected to be a
zero-mean, standard Gaussian distribution p(z) = N (z; 0, I) where I is the identity
matrix.

x
Probabilistic
Encoder
qφ(z|x)

µ

σ

z = µ+ σ � ε
ε ∼ N (0, I)

z
Probabilistic
Decoder
pθ(x|z)

x̂

Figure 2.6: Illustration of a variational au-
toencoder with the reparameterization trick
equation.

Network Architecture. The VAE ar-
chitecture resembles a standard autoen-
coder where the encoder and decoder net-
works are probabilistic in the sense that
they output parameters of probability dis-
tributions. In contrast to autoencoders
that learn latent representations z that
minimizes the reconstruction error on the
data, VAEs learns an approximate poste-
rior qφ(z|x) that maximizes the likelihood
of pθ(x). Similar to autoencoders, we can extract latent representations of the data
with the probabilistic encoder. However, VAEs can also estimate the likelihood of
unseen data points under the learned model, as well as generate new data by de-
coding latents sampled from the prior. Figure 2.6 shows an illustration of a VAE
architecture. The encoder represents the approximate posterior qφ(z|x) which out-
puts the mean µφ(x) and standard deviation σφ(x) of a Gaussian distribution over
z, which is the standard choice for qφ [73]. The latent vector is sampled using the
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”reparametrization trick” [73,108] by computing

z = µφ(x) + σφ(x)� ε, where ε ∼ N (0, I), (2.5)

where � denotes element-wise multiplication. The reparametrization enables com-
puting gradients of the expectation Ez∼qφ(z|x)[log pθ(x|z)] in Equation 2.4 with the
backpropagation algorithm. The decoder represents the likelihood pθ(x|z) that can
be used to generate data x from sampled latents z, where the distributional form
depends on the data type of x.

VAEs have been used in various applications for modeling images, text, and au-
dio data [109–115]. Furthermore, they have been extended to modeling data from
different modalities due to their capability of handling missing modalities to enable
cross-modal data generation [72, 101, 102, 116, 117]. In Paper A and B, we employ
Variational Canonical Correlation Analysis (VCCA) [72] for learning joint represen-
tations of natural images and web-scraped information of grocery items to facilitate
learning image classifiers.

Deep Reinforcement Learning

In this section, we give a brief overview RL to provide some preliminaries for Paper D.
The RL setup considers a learning agent that interacts with an environment E over
a number of discrete time steps [75]. The environment is modeled with a Markov De-
cision Process (MDP) [118] represented as a tuple E = (S,A, P,R, µ, γ) consisting of
the state space S, action space A, state transition probability P (s′|s, a), reward func-
tion R(s, a), initial state distribution µ(s1), and discount factor γ. At each time step
t, the agent receives a state st from the environment, selects an action at ∈ A using a
policy π(a|s), and enters the next state st+1 with transition probability P (st+1|st, at)
and receives a numerical reward following rt from the environment. This procedure
is repeated until the agent reaches a terminal state in which the procedure can be
restarted. The return Gt =

∑∞
k=0 γ

krt+k is the discounted accumulated reward from
time step t. The goal for the agent is to learns policy that maximizes the expected
return.

The value function V π(s) = E[Gt|st = s] defines the expected return following
policy π from state s. Value functions are essential for learning as they can be used
for comparing policies, such that π ≥ π′ if and only if V π(s) ≥ V π

′
(s) [75]. An

optimal policy π∗ is defined as a policy that is better than or equal to all other
policies. There may exist several optimal policies π∗ that share the same optimal
value function given by V ∗(s) = maxπ V

π(s) for all states s ∈ S. Similar to the value
function, we also have the action value function Qπ(s, a) = E[Gt|st = s, at = a] which
is the expected return for selecting action a in state s and following policy π. Optimal
policies also share the same action value function given by Q∗(s, a) = maxπ Q

π(s, a)
for all states s ∈ S and actions a ∈ A. The optimal action value function Q∗ can be
written in terms of the optimal value function V ∗ as

Q∗(s, a) = E[rt+1 + γV ∗(s)|st = s, at = a]. (2.6)

This means that if we have access to Q∗, we can directly obtain the optimal action
a∗ in state s by using a∗ = arg maxaQ

∗(s, a) to maximize the expected return.

In this thesis, we focus on model-free RL algorithms which have been popular in
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past years. The alternative is model-based RL algorithms which allows the agent to
plan ahead when interacting with the environment by having access to a function that
predicts the next states and rewards. However, having access to the ground truth
of such function is impossible in many RL problems. Model-free RL algorithms can
be divided into Q-learning and policy optimization methods. Q-learning methods,
such as Deep Q-Networks (DQNs) [77, 119], aim to approximate the optimal action
value function Q∗(s, a) with parametric function Qθ(s, a) by minimizing objective
functions based on the Bellman equation. The optimization is often performed off-
policy, such that the agent can be updated using data collected from the environment
at any point in time. The actions are selected with at = arg maxaQ

∗(s, a) through
the connection between the action value function and the policy. Policy optimization
methods, such as Advantage Actor-Critic (A2C) [120], represent the policy in a
parametric form πθ(a|s). The optimization is often performed on-policy meaning
that the policy is only updated using data collected in the environment by the most
recent policy. Policy optimization methods tends to be more stable than Q-learning
methods. However, as Q-learning methods can reuse collected data for updating the
policy, these methods tends to be more sample efficient than policy optimization
methods.



Chapter 3

Fine-Grained Image Recognition

In this chapter, we provide an overview for Paper A and B that focuses on fine-grained
image recognition (FGIR) [36] of grocery items. Object recognition in grocery shop-
ping scenarios is a challenging task for visually impaired (VI) people [22, 48, 121]
due to the necessity of visual capabilities to navigate and identify the products.
Regarding identifying products, groceries are often structured in fine-grained man-
ners where details on appearance and shape help us to distinguish between different
items. However, since distinguishing between packaged items often requires reading
text and raw food items can have similar shapes, recognizing fine-grained details can
be difficult without the ability to see. In recent years, there has been an emerging
interest of development of computer vision-based assistive technologies for assisting
VIs with grocery shopping [12, 57–62]. Nevertheless, fine-grained recognition of gro-
ceries still remain challenging due to the need for real-world training data for such
systems to be robust in grocery stores. We aimed to enhance the robustness and
predictive performance of image classifiers by combining natural images with exter-
nal web information with the items. In Paper A, we have collected a dataset with
natural images of groceries with a mobile phone camera, and web-scraped images
and text descriptions about the items, for evaluating image classifiers in real-world
supermarket scenarios. We perform an ablation study over the different data types
in the data set in Paper B, where we show that utilizing all data types improves
the fine-grained classification performance over image classifiers trained with only
the natural images. We cover some related work (Section 3.1), describe the dataset
collection process (Section 3.2) and our used approach for utilizing multi-view data
(Section 3.3), as well as summarize the experimental results from the ablation study
(Section 3.4).

3.1 Related Work

In this section, we will briefly discuss the related work on FGIR, datasets for FGIR,
and multi-view learning.

Fine-Grained Image Recognition. The goal with FGIR [36] is to distinguish
between a set of visually similar object classes that belong to some super-class. The
main challenge is to recognize the fine-grained visual details that are required for
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discriminating between visually similar objects. In recent years, the successes with
deep learning in computer vision have encouraged researchers to explore various
approaches for FGIR in different domains with the goal of discriminating between
sub-classes of different animals [122], cars [123], fruits [124], and retail products [125].
These approaches can broadly be divided into three directions where the deep net-
works utilize (i) localization-classification subnetworks, (ii) end-to-end feature encod-
ings, and (iii) external information. In (i), the goal is to find parts that are shared
across the sub-classes of some general object and then discover how these localized
parts differ in appearance. This can be achieved by utilizing feature maps from con-
volutional layers as local descriptors [126,127], employing detection and segmentation
techniques for localizing object parts [128–130], or leveraging attention mechanisms
in scenarios where common object parts are difficult to represent [131, 132]. With
(ii), the goal has been to learn features that are better at capturing local differences
by computing second-order feature interactions [133,134], as well as designing novel
loss functions [135, 136]. In (iii), data from external domains, such as the web or
different modalities (e.g., text or audio), is utilized to influence the learning of fine-
grained details in the objects. These additional data types can be relatively cheap to
collect and serves as extra guidance for learning useful representations to the FGIR
task. The goal with learning from noisy web data is to reduce the need for human-
annotated data [137–139], while learning from multimodal data aims to obtain a joint
representation that captures the correspondences between the images and the other
modalities [140–142]. In addition to FGIR, both web-scraped and multimodal data
has been used for zero-shot learning to transfer knowledge from densely annotated
categories to learn new fine-grained classes [143–145]. Our work in Paper A and B
is mostly related to (iii) FGIR with external information, where we use web-scraped
images and text descriptions in combination with natural images to improve the
classification performance of fine-grained grocery recognition.

Datasets for Fine-Grained Image Recognition There exist many image datasets
for benchmarking computer vision models [15, 122, 146–151]. These datasets ranges
from large-scale datasets annotated by groups of classes, such as [146,152], to smaller
but densely-annotated datasets [150,153–155]. There also exist domain-specific datasets
for FGIR tasks of animals and species [122, 156–159], fashion [160, 161], airplanes
and cars [162–165], faces [166–168], and foods [124, 169]. Several of the mentioned
datasets have also been extended to benchmarking in zero/few-shot image classifica-
tion [143,170–172]. In computer vision for visually impaired people, we have recently
seen an emergence of datasets collected by people who are blind/low-vision [13–15,
59, 173]. Datasets for FGIR of grocery items in their natural environments, such
as grocery stores, shelves, and kitchens, have been addressed in plenty of previous
works [125,174–178]. Similarly, there exist other kinds of food datasets with images
of various food dishes [169,179,180], cooking videos [181,182], recipes [183–185], and
also restaurant-oriented information [186, 187]. Our grocery item dataset (see Sec-
tion 3.2) shares several similarities with the mentioned works above. For instance, all
images of raw and packaged groceries are taken in their natural environment, images
are taken with a mobile phone camera from an egocentric view-point, grocery classes
are hierarchically labeled, and each class have an additional web-scraped iconic image
and text description.
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Multi-view Learning. Machine learning with multiple types of data is an active
research field [98,188]. In particular, the intersection of computer vision and natural
language processing has been of great interest and has led to applications such as
image captioning [28,189,190], visual question answering [54,56,191]. In this thesis,
we have focused on learning joint representations across different data types by ap-
plying the subspace learning approach from multi-view learning [188]. A view can be
defined as data that has been recorded from a specific sensor [192]. For example, we
consider natural and web images to be from different views as the images have been
recorded using different cameras. Subspace learning approaches aims to learn joint
representations from multiple views by assuming that each view have been generated
from a latent space that is shared among the views. Most methods originate from
Canonical Correlation Analysis [193] (CCA) where the goal is to linearly project
pairs of different views into a lower-dimensional space where the correlation between
the projections is maximized. There exist various extensions of CCA which uses
deep neural networks for learning nonlinear mappings to extract more rich features
of the views, such as Deep CCA [194] and Deep Canonically Correlated Autoen-
coders [100]. Inspired from the Deep CCA variants, Variational CCA [72] (VCCA) is
a multi-view deep generative model that can both learn joint representations and gen-
erate new data by sampling from the shared latent space. An advantage of VCCA is
the straight-forward extension to modeling both a shared latent space and private la-
tent spaces which capture the view-specific variations to focus the learning of shared
variations into the shared latent space [72, 192, 195–198]. In Paper B, we employ
VCCA, and its extention to private latent spaces, for learning joint representations
of the different data views in our grocery item dataset to obtain more robust image
classifiers.

3.2 Dataset Collection

Figure 3.1: Example images of
challenging scenarios.

In this section, we describe our procedure for col-
lecting the image dataset of grocery items in Pa-
per A. We visited several supermarkets in Stock-
holm, Sweden, to collect natural images of groceries
with a mobile phone camera to imitate a shopping
scenario using an assistive vision device. The col-
lected images captures situations that can be chal-
lenging for assistive vision devices, such as mis-
placed items, hand occlusions, multiple instances
and classes present, and various lighting conditions
(see Figure 3.1). All images were taken with a sin-
gle targeted item in mind, such that each image is
paired with a single label. For items which belong
to a clear super-class, e.g., apples and milk packages, we also provided the general
class of the items to establish a hierarchical labeling structure of the data. Fur-
thermore, we complemented the image dataset with web-scraped information of each
grocery item. More specifically, we visited the online shopping website of a Swedish
supermarket chain and downloaded 1) an iconic image of the item on a white back-
ground, 2) a text description that describes the flavor and ingredients of the item,
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Table 3.1: Examples of grocery item classes in the Grocery Store dataset. We display the class label
(coarse-grained class in parenthesis), followed by two natural images taken with a mobile phone
inside grocery stores, and the the web-scraped information of the items consisting of an iconic
image and a text description. We have highlighted ingredients and flavors in the text descriptions
that are characteristic for the specific item.

Class

Labels

Natural

Images

Iconic

Images

Text

Descriptions

Granny Smith

(Apple)

“...green apple with white, firm pulp
and a clear acidity in the flavor.”

Royal Gala

(Apple)

“...crispy and very juicy apple,
with yellow-white pulp. The peel

is thin with a red yellow speckled color.”

Tropicana

Mandarin

(Juice)

“. . . is a ready to drink juice
without pulp pressed on orange,
mandarin and grapes. Not from

concentrate. Mildly pasteurized.”

Yoggi Vanilla

(Yoghurt)

“...creamy vanilla yoghurt
original... added sugar than

regular flavored yoghurt. Great for
both breakfast and snacks.”

and 3) the nutrition values for items where it was applicable. We show four examples
of grocery items and their web-scraped information in Table 3.1. Since these data
types are on a class-based level, we can use the web-scraped information as weak su-
pervision to guide the classifier to learn fine-grained details that helps discriminating
between visually similar items. We have established training, validation, and test
sets of the natural images where the split was made according to the grocery store
location to avoid mixing images from different stores. Finally, we made the dataset
publicly available under the MIT license1.

3.3 Fine-Grained Image Recognition of Grocery Items

In this section, we describe the problem setting of the grocery item classification task
from the dataset collected in Paper A. Moreover, we describe our approach from
Paper B for learning joint representations of the available data views to improve the
classification performance.

Problem Setting

We focus on the application of training an image recognition app in mobile phones for
assisting VIs with grocery shopping. Training such image classifiers typically requires
immense amounts of annotated images of the groceries. Additionally, the natural
images should be collected in scenarios where the app would be used, such as grocery
stores or home environments, which further complicates the collection procedure. To

1Grocery Store Dataset URL: https://github.com/marcusklasson/GroceryStoreDataset

https://github.com/marcusklasson/GroceryStoreDataset
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reduce the need for collecting and annotating natural images from mobile phones,
we aim to use web-scraped information about the groceries as additional supervision
when training the image classifiers. The web-scraped information should help the
classifier to focus on learning the learn fine-grained details of the items to improve
the classification performance and robustness in real environments.

The following data views are available in the dataset for training the image clas-
sifiers:

� I: Natural images of the grocery items taken inside grocery stores.
� x: Feature vectors of the natural images I extracted from some CNN fϕ pa-

rameterized by ϕ.
� y: Class labels of the grocery items in the corresponding natural images.
� i: Iconic images of the grocery items scraped from a supermarket website.
� w: Text description of the grocery items scraped from the same supermarket

website as i.

See Table 3.1 for examples of the data views. The straightforward approach is to
train a CNN with pairs of natural images I and class labels y in a supervised setting.
However, the number of samples may be insufficient for training a CNN from scratch,
which can lead to overfitting and low generalization capability to new images. One
alternative is to employ transfer learning [199] where parameters from a CNN pre-
trained on some large dataset, such as Imagenet [146], are used for initialization and
we adapt the network to the grocery item recognition task by either 1) fine-tune some
of the final layers, or 2) train a linear classifier from extracted features [200]. We take
the latter approach and use extracted features for training to mitigate overfitting.
Furthermore, we use the web-scraped data views for learning more rich representa-
tions of the grocery items that can be used for training more accurate and robust
image classifiers, which we present in the next section.

Multi-View Representation Learning of Grocery Items

We describe the multi-view learning approach we applied for learning joint represen-
tations of grocery items to use for training the image classifiers. More specifically,
we employed a deep latent variable model called Variational Canonical Correlation
Analysis [72] (VCCA) for learning the joint representations. In the VCCA approach,
we assume that the different data views have been generated from the same, shared
latent space before they are observed in their original data type. The goal is to
obtain joint representations by learning the shared latent space that captures the
correspondences across the available views. The joint representations can then be
used for training more accurate and robust image classifiers.

Figure 3.2 shows the network architecture of VCCA used in Paper B for learning
the joint representations from all available data views. In this example, we have
an input image I of a juice package with the fine-grained class label y God Morgon
Orange and Red Grapefruit Juice. We obtain the latent representation z by encoding
the feature vector x = fϕ(I) of the input I extracted from a CNN fϕ pretrained on
Imagenet. In Paper B, we use a DenseNet [201] architecture as fϕ. We assume that
the latent representation z is shared by all available views to establish a more rich
representation of the grocery item images by using the each available view as addi-
tional supervision to the natural images. We capture the correspondences between
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Input image I

x

Feature vector x
of image I

Pretrained

CNN fϕ(I)
qφ(z|x) z

Shared
latent z

x̂
Feature vector x̂ ≈ x

of image I
pθx(x|z)

pθi(i|z) Iconic image i

”God Morgon Orange/Red Grapefruit

is a fresh blend of sweet orange juice

and tasty fresh red grapefruit.”

pθw(w|z)

Text description w

God Morgon Orange and
Red Grapefruit Juice

pθy(y|z)

Class label y

God Morgon Orange and
Red Grapefruit Juice

z fλ(z)

Class label y

Clf. Option 1: Train separate classifier fλ with z

Clf. Option 2: Add class label decoder pθy (y|z)

Figure 3.2: Illustration of the VCCA architecture used in Paper B for fine-grained classification.

each view by predicting each view separately using the latent z as input to decoder
networks that are specific for each view. The decoder pθx(x|z) is an MLP similar
to the encoder and outputs a reconstruction x̂ of the feature vector x. The decoder
pθi(i|z) is a CNN that predicts the iconic image i, while the decoder pθw(w|z) is
an RNN predicting the next word in the text description w. We have two options
for training the image classifier. The first option is a two-step procedure where we
1) train the VCCA model from all available views except the class labels y, then 2)
train a separate classifier fλ(z) on the learned latent representations z and the class
labels y. The second option is to learn the classifier simultaneously as the latent
space by adding a decoder pθy (y|z) that predicts the class label y from z. Note that
we only use x in the encoder part since the natural images is the only view that
is available at test time when predicting the item class of new images taken in the
grocery store. In the next section, we perform an ablation study over the available
views to analyze how each view affects the fine-grained classification performance.

3.4 Experiments

In this section, we summarize the main experimental results from Paper B. The ex-
periments involved an ablation study using VCCA with the possible combinations
of available data views to investigate how each data view contributes to the classi-
fication performance. We present results on fine-grained classification performance,
visualize the learned latent space to provide insights in how the web-scraped infor-
mation affect the performance, and demonstrate how the iconic image decoder can
be used for explaining the misclassifications by generating iconic images from natural
images. We use subscripts to denote which data views that are utilized by VCCA.
Adding y to the subscript means that the VCCA model uses a class label decoder
pθy (y|z) for classification, otherwise we have trained a separate linear classifier fλ(z)
with softmax activation on the latent representation after training VCCA.

Fine-Grained Classification Results. Adding the web-scraped views in VCCA
improves the classification performance over approaches that only utilize the natural
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Figure 3.3: Fine-grained accuracies on the Grocery Store dataset for all classification methods. We
show the means and standard deviations averaged over 5 seeds. Adding the iconic image i and text
description w for learning joint representations with VCCA improves the classification performance
over approaches that only utilize the natural images and class labels.

images and class labels. We performed an ablation study over the available views
that can be used by VCCA. The fine-grained classification performance was measured
with a separate linear classifier trained on the learned latent representations and a
class label decoder. We also compared the performance against training a DenseNet
from scratch on the dataset (DenseNet) and a linear classifier with softmax activa-
tion trained on extracted features from a pretrained DenseNet (Softmax). Figure
3.3 shows a bar plot over the fine-grained accuracies achieved by all classification
methods. For the methods only using natural images and class labels, i.e., DenseNet,
Softmax, VAEx, and VCCAxy, we see that Softmax performs best which could be
due to loss of information in VAEx and VCCAxy when the feature vectors are com-
pressed into lower-dimensional latent representations. However, the performance of
all VCCA models utilizing the iconic image i and/or the text description w out-
performs Softmax significantly, which shows that both web-scraped views are useful
for enhancing the fine-grained classification performance. Only utilizing i in VCCA
performs on par with combining both i and w which could potentially be improved
by processing the text descriptions with some word filtering or pretrained word em-
beddings [76, 202]. Finally, we observe that both classification options for VCCA
performs similar, which shows that both options can be practical for classification
using the learned latent representation.

Natural
Image

Iconic
Image

Decoded
Image

Figure 3.4: Examples of decoded iconic
images from VCCAxiwy with their
corresponding natural image and true
iconic image.

Iconic Image Generation. The iconic im-
age decoder can be used for interpreting the
outcomes of predicted classes. Figure 3.4 shows
two examples of iconic images decoded from
VCCAxiwy from two natural images of the
classes Orange Bell Pepper and Anjou Pear
from the test set. On the first row, the model
has generated an iconic image of an orange-
green colored bell pepper with the shape of
the green bell pepper in its iconic image. On
the second row, the decoded iconic image is a
Granny Smith apple instead of the true class
Anjou Pear. Hence, the iconic image decoder
can be used as a tool for providing insights in why the classifier makes prediction
errors.
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(a) VAEx (b) VCCAxi (c) VCCAxw

(d) VAEx (e) VCCAxi (f) VCCAxw

(g) VAEx (h) VCCAxi (i) VCCAxw

Figure 3.5: Visualizations of the latent representations from VAEx, VCCAxi, and VCCAxw pro-
jected in 2-dimensional space with PCA. In (a-c), we show the latent representations plotted using
the iconic images of the corresponding object class. In (d-f), we illustrate how the iconic images
structures the items based on visual similarities by focusing on the green and red apple classes in the
dataset plotted in their corresponding colors. Similarly, in (g-i), we show how the text descriptions
structure items based on ingredients and flavor by focusing on visually similar yoghurt (green) and
juice (yellow) packages. The blue dots correspond to all other grocery item classes.

Latent Space Visualizations. The web-scraped iconic images and text descrip-
tions structures the grocery items based on view-specific similarities in the latent
space that are beneficial for fine-grained classification. Figure 3.5 demonstrates how
adding either the iconic image i or the text description w can change the structure
of the latent space. We used PCA for projecting the learned latent representations
of the test set into a 2-dimensional space. We have plotted the corresponding iconic
image for the latent representations of VAEx, VCCAxi, VCCAxw for visualization
purposes in Figure 3.5(a-c). The VAEx model in Figure 3.5(a) separates raw and
packaged grocery items into two separate clusters in the latent space. When adding
the iconic image in in Figure 3.5(b), we observe that the latent space becomes struc-
tured according to the color of the items. For VCCAxw in in Figure 3.5(c), the latent
space becomes structured according to the ingredients of the items, where we see in
the raw grocery item cluster that bell peppers are placed in the upper region while
apples are in the lower region.

Next, we focus on a certain set of classes to gain more insights in how the web-
scraped views affect the latent space. In Figure 3.5(d-f), we inspect how items with
different colors are separated in the latent space by utilizing i or w in VCCA by
plotting the green and red apple classes as green and red points respectively. All
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other classes are plotted as smaller points in blue. We observe that both VCCAxi and
VCCAxw manages to separate the apple classes better than VAEx where VCCAxi
obtains the most clear separation. We also want to inspect how the views separates
visually similar items with different ingredients and flavors. Hence, in Figure 3.5(g-i),
we have plotted white-colored yoghurt and juice package classes in the colors green
and yellow respectively. We see that VCCAxw manages to separate these items better
than VCCAxw due to different ingredient information about yoghurt and juice that
is mentioned in the text descriptions.

3.5 Discussion

In this chapter, we summarized the contributions in Paper A and B on FGIR for
assisting VI people with grocery shopping using an assistive vision app on their
mobile phone. In Paper A, we collected a publicly available dataset with mobile
phone images of groceries taken in grocery stores as well as web-scraped information
about the items from a supermarket website. In Paper B, we show through multi-
view learning how the web-scraped information can be utilized to train more accurate
and robust image classifiers, compared to training with the mobile phone images only.
More specifically, the iconic images structures the items after visual similarities such
as colors and shapes in the learned latent space, while the text descriptions pushes
items with similar ingredients and flavors closer to each other. This shows that the
cheap-to-collect web-scraped views can serve as a good alternative for improving the
fine-grained classification performance instead of collecting more natural images in
the grocery stores.

Regarding the dataset collection in Paper A, we have some belated suggestions
on how to make the collection procedure easier and also how to enrich the dataset.
The images should be collected by recording videos of the grocery items rather than
taking still images in the grocery stores. This would potentially enhance the dataset
size and could also mitigate the class imbalance in the training and test splits. Fur-
thermore, we could evaluate the classifiers on video sequences which would be a more
realistic and user-friendly setting for how an assistive vision app would be used by
VI people. Another suggestion to enrich the dataset would be to download more
instances of iconic images and text descriptions from supermarket websites, which
could potentially allow the VCCA model to capture the view-specific variations into
the learned latent representations. Finally, it would have been valuable to have nat-
ural images collected by VI people to benchmark the classifiers on scenarios with the
actual target users [15,47].

In Paper B and Section 3.4, we observed that utilizing the iconic images in VCCA
affects the classification performance significantly better than the text descriptions.
We believe that this could be due to the noise in the text descriptions where often
there are only a few words that are relevant to the image recognition task. In the
future, we could pre-process the text descriptions by removing stop words, e.g., ’the’,
’it’, ’and’, etc., and other words that are irrelevant for recognizing the fine-grained
details of the items. Moreover, we could use pretrained word embeddings [202–204]
for considering word similarities, add attention mechanisms [93,205] in the model for
focusing on relevant words, and use data augmentation techniques for text [206] to
learn more robust joint latent representations.



30 CHAPTER 3. FINE-GRAINED IMAGE RECOGNITION

Finally, we believe the Grocery Store dataset could be used for benchmarking
image classifiers on zero/few-shot learning [39, 40] and continual learning [37, 38]
settings. This would be an important extension of the dataset as these applications
are crucial to enhance the usability of assistive vision systems in real-world scenarios.



Chapter 4

Continual Learning

In this chapter, we give an overview of Paper C and D where we focus on continual
learning (CL) [37, 38]. A CL system receives samples of classes to learn continu-
ously over time while maintaining its overall performance on every seen class. Such
capability is critical for assistive vision systems as the system may need to adapt
to unseen items in new environments. Furthermore, CL on mobile devices would
enable personalizing the devices to specific items that the VI user wants to locate
and recognize. The main challenge with the CL setup is catastrophic forgetting [63]
where previously learned abilities are overwritten by recent acquired knowledge (see
Figure 4.1). However, retraining on all previously seen data may be prohibited due to
lack of computational budget or accessibility to the seen datasets. Replay-based CL
methods efficiently mitigate catastrophic forgetting by revisiting old samples stored
in a small memory buffer [207–209].

Most replay-based methods in CL use simple strategies for retrieving replay sam-
ples and ignore the time to learn which is important for memory retention in human
learning [67, 69, 70]. Furthermore, most works rely on tiny memory buffers although
historical data is almost always available in many real-world machine learning ap-
plications [64–66]. Nevertheless, the requirement of small replay memories remains
as due to limitations on computational budget and data transmission times. To this
end, we propose in Paper C a new CL setting where historical data is available while
the processing time is limited. For this new setting, we propose replay scheduling
where we select which tasks to replay at different times, and demonstrate the advan-
tages of considering time to replay in CL. In Paper D, we present a framework based
on reinforcement learning (RL) [75] for learning replay scheduling policies that can
be transferred to new CL scenarios for mitigating catastrophic forgetting without
added computational cost. Our proposed replay scheduling approach opens up for
new research directions that can bring current CL research closer to real-world needs.

4.1 Related Work

In this section, we give an overview of different approaches in CL, especially replay-
based methods which our proposed replay scheduling approach in Paper C and D is
based on.

31
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Figure 4.1: Illustration of catastrophic forgetting in a continual learning scenario. The network fθ
receives a task dataset of an Apple Juice class in Dtraint to learn, and correctly predicts the Apple
Juice class in the unseen test image in Dtest. The next task dataset involves learning an Orange
Juice class from Dtraint+1 which fθ adapts to without retaining knowledge about the Apple Juice

class, such that fθ makes the wrong prediction during evaluation on Dtest again.

Continual Learning. The existing CL approaches for mitigating catastrophic for-
getting in neural networks can broadly be divided into three main areas, namely,
regularization-based, architecture-based, and replay-based methods. Regularization-
based methods mainly focus on preventing the parameters important for previous
tasks from wide changes and fit the remaining parameters to new tasks [210–212].
Knowledge distillation methods [213] also belong to these methods where stored clas-
sification logits are used for regularizing the output units for previous tasks in the
network [214, 215]. More recently, projection-based approaches have been proposed
for constraining the parameter updates to subspaces which avoid interference with
previous tasks [216, 217]. Architecture-based methods focus on adding task-specific
network modules for every seen task [218–221], or isolating parameters for predicting
specific task in fixed-size networks [222–224]. Replay-based methods revisits samples
from old tasks when learning new tasks. The old samples are either stored in an exter-
nal memory [207–209,225–227], or synthesized with a generative model [116,228,229].
Both regularization- and architecture-based methods can be combined with replay
for improving the models capability of remembering tasks [212, 220, 230–234]. Our
replay scheduling idea is originated from replay-based methods which we will cover
more in detail next.

Replay-based Continual Learning. Much research effort in replay-based CL
has focused on selecting higher quality samples to store in memory [207, 212, 235–
240]. In [207], several selection strategies are reviewed in scenarios with tiny memory
capacity, such as reservoir sampling [241], first-in first-out buffer [208], k-Means, and
Mean-of-Features [239]. However, elaborate selection strategies have been shown
to give little benefit over random selection for image classification problems [209,
242]. More recent work has been focused on enhancing the memory capacity by
storing compressed features rather than raw data [209, 243], evolving the memory
samples using data augmentation to avoid overfitting [226,244], and using contrastive
learning to improve memory retention [245,246]. Selecting the time to replay old tasks
has mostly been ignored in the literature, with an exception in [247] which replays
memory samples that would most interfere with a foreseen parameter update. Our
replay scheduling approach differs from the above mentioned works since we focus on
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learning to select which tasks to replay. Nevertheless, our scheduling can be combined
with any selection strategy and replay-based method.

4.2 Replay Scheduling in Continual Learning

In this section, we present our proposed replay scheduling approach studied in Paper
C and D for mitigating catastrophic forgetting in CL. More specifically, we focus
on the contributions in Paper C, where we introduce a slightly new CL setting that
considers real-world needs where all historical data can be available since data storage
is cheap. Additionally, we demonstrate the advantages of replay scheduling in such
setting where we select which tasks to replay, where we use Monte Carlo tree search
(MCTS) [248] to search for efficient replay schedules by allowing multiple episodes
in single CL environments.

New Problem Setting for Continual Learning

In this section, we describe the proposed CL setting presented in Paper C. We assume
that historical data is accessible at any time for mitigating catastrophic forgetting
in the model. However, re-training the model on all available historical data is
prohibited due to limitations on compute and data transmission times. Therefore,
the goal is to determine which historical tasks to replay and sample a small replay
memory from the selected tasks to mitigate catastrophic forgetting as efficiently as
possible.

The notation of this problem setting resembles the traditional CL setting for
image classification. We let a neural network fφ, parameterized by φ, learn T tasks
from the datasets D1, . . . ,DT arriving sequentially one at a time. The t-th dataset

Dt = {(x(i)
t , y

(i)
t )}Nti=1 consists of Nt samples where x

(i)
t and y

(i)
t are the i-th data

point and class label respectively. Additionally, the dataset is split into training,
validation, and test sets such that D1:T = {(Dtraint ,Dvalt ,Dtestt )}Tt=1. The training
objective at task t is given by

min
φ

Nt∑
i=1

L(fφ(x
(i)
t ), y

(i)
t ), (4.1)

where L(·) is the loss function, which in our case is the cross-entropy loss. The
challenge is for the network fφ to retain its classification performance on the previous
t− 1 tasks.

We assume that historical data from old tasks are accessible at any time step.
However, we can only fill a small replay memory M with M historical samples for
mitigating catastrophic forgetting of old tasks due to processing time constraints.
The challenge then becomes how to select the M samples from the historical data
to include in the replay memory that efficiently retain the previous knowledge. We
focus on selecting the samples on task-level by deciding on the task proportions
(p1, . . . , pt−1) on samples to fetch from each task, where

∑t−1
i=1 pi = 1 and pi ≥ 0.

The number of samples from task i to place inM is given by pi ·M . To simplify the
selection of which tasks to replay, we construct a finite set of possible task proportions
that can be used for constructing M.

This problem setting shares several assumptions with traditional CL, such as:
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� The model receives the datasets at different time steps from a continuous
stream.

� Re-training on all historical data is prohibited.
� The model should perform well overall across all seen tasks and, hence, mitigate

catastrophic forgetting.
� Replay memory size M is small.

The only difference with this setting and traditional CL is that all historical has
been stored rather than deleted, and we can access this data to fill the replay mem-
ory M to mitigate catastrophic forgetting. We argue that this setting aligns well
with real-world needs as data storage is cheap and easy to maintain but retraining
large machine learning models is computationally expensive. Therefore, we use small
replay memory sizes to limit the processing times of replay when the model is learning
new tasks.

Monte Carlo Tree Search for Replay Scheduling

In this section, we describe how we used MCTS in Paper C to show the advantages of
replay scheduling in the new CL setting. We focus on an ideal CL environment where
executing multiple episodes is allowed to enable searching for replay schedules. For
demonstration purposes, we use MCTS for finding replay schedules that efficiently
mitigate catastrophic forgetting by selecting compositions of replay memories at dif-
ferent time steps.

Algorithm 1 Discretization of ac-
tion space with task proportions

Require: Number of tasks T
1: T = ()
2: for i = 1, . . . , T − 1 do
3: Pi = {}
4: B = combinations([1 : i], i)
5: B∗ = unique(sort(B))
6: for bi ∈ B∗ do
7: pi = bincount(bi)/i
8: Pi = Pi ∪ {pi}
9: end for

10: T [i] = Pi
11: end for
12: return T

We define a replay schedule as a se-
quence S = (p1, . . . ,pT−1), where pi =
(p1, . . . , pT−1) for 1 ≤ i ≤ T−1 is the sequence
of task proportions for determining how many
samples per task to fill the replay memory
with at time step i. To make the selection
of task proportions tractable, we construct a
discrete action space with a finite number of
choices for how to construct the replay mem-
ory at different time steps. Algorithm 1 shows
the procedure for creating this action space.
At task i, we have i − 1 historical tasks that
we can choose from. We then generate all pos-
sible bin vectors bi = [b1, . . . , bi] ∈ Bi of size
i where each element are a task index 1, ..., i.
The elements in each bin vector are sorted by task index, and we only keep the unique
bin vectors after sorting. For example, at i = 2, the unique choices of vectors are
[1, 1], [1, 2], [2, 2], where [1, 1] indicates that all samples in the replay memory should
be from task 1, [1, 2] indicates that half memory is from task 1 and the other half are
from task etc. The task proportions are then computed by counting the number of oc-
currences of each task index in bi and dividing by i, such that pi = bincount(bi)/(i).
From this specification, we have built a tree T with different task proportions that can
be selected at different time steps. A replay schedule S is constructed by traversing
through T and appending a single task proportion from every task level to S.
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Selection Expansion Simulation Backpropagation

Repeat X times

Execute tree policy
until leaf node vt
at task t is reached

Create new node
vt+1 at task t + 1

Backpropagate reward
r from replay schedule
S from vt+1 to root

Randomly
select next
nodes until
reaching
task T

Figure 4.2: Outline of MCTS when searching for replay schedules.

The tree-shaped action space of task proportions grows fast with the number of
tasks, which complicates studying replay scheduling in datasets with longer task-
horizons. Therefore, we proposed using MCTS since it has been successful in ap-
plications with large action spaces [78, 249, 250]. In our case, MCTS concentrates
the search for replay schedules in directions with promising CL performance in the
environment. Each memory composition in the action space corresponds to a node
that can be visited by MCTS. For instance, at task t, the node vt is related to a task
proportions pt that can be used for retrieving a replay memory from the historical
data. We store the related task proportion pt from every visited node vt in the re-
play schedule S. The final replay schedule is then used for constructing the replay
memories at each task during the CL training. Figure 4.2 shows an illustration of
the procedure for executing MCTS to search for replay schedules, where each step
involves the following:

Selection. During a rollout, the tree policy either selects an unvisited child ran-
domly from the current node vt, or selects the next node by evaluating the Upper
Confidence Tree (UCT) [251] if all children has been visited earlier. The child vt+1

with the highest UCT score is selected using the function from [250]:

UCT (vt, vt+1) = max(q(vt+1)) + C

√
2 log(n(vt))

n(vt+1)
, (4.2)

where q(·) is the reward function, C the exploration constant, and n(·) the number
of node visits. The tree policy is executed until a leaf node vt is reached.

Expansion. If the leaf node vt has unvisited children, the search tree is expanded
with one of the unvisited child nodes vt+1 selected with uniform sampling.

Simulation and Reward. After the expansion step, the succeeding nodes are
selected randomly until reaching a terminal node vT . The task proportions p1:T−1

from the visited nodes in the rollout constitutes the replay schedule S. After training
the network using S for replay, we calculate the reward for the rollout given by

r = 1
T

∑T
i=1A

(val)
T,i , where A

(val)
T,i is the validation accuracy of task i at task T .

Backpropagation. The reward r is backpropagated from the expanded node vt+1

to the root node, where the reward function q(·) and number of visits n(·) are
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updated at each node in the path.

As mentioned earlier, we use MCTS to search for replay schedules to illustrate the
importance of learning the time to learn. To this end, we study replay scheduling
in an ideal CL environment where multiple episodes is allowed to find replay sched-
ules. However, in the standard CL setting, multiple episodes are prohibited which
currently prevents replay scheduling to be applied in real-world CL scenarios. In the
next section, we present a policy learning framework based on RL to learn replay
scheduling policies that generalize.

4.3 Policy Learning for Replay Scheduling

In this section, we introduce the RL-based framework for learning replay scheduling
policies that was proposed in Paper D. In real-world CL settings, learning the policy
with multiple episodes is infeasible, which is why we need a general policy for replay
scheduling. We aim to learn policies that select which tasks to replay from states
representing the current task performance in the CL environments. By representing
the states with task accuracies, the policy can be applied for mitigating catastrophic
forgetting in new CL scenarios. Our intuition is that there may exist general patterns
regarding the replay scheduling, e.g., tasks that are harder or have been forgotten
should be replayed more often. Moreover, the policy may non-trivially take task
properties into consideration through learning how the task accuracies are affected
by selecting different replay memory compositions.

We model the CL environments as Markov Decision Processes [118] (MDPs) where
each MDP is represented as a tuple Ei = (Si,A, Pi, Ri, µi, γ) consisting of the state
space Si, action space A, state transition probability Pi(s

′|s, a), reward function
Ri(s, a), initial state distribution µi(s1), and discount factor γ. We assume that we
have access to a fixed set of training environments E(train) = {E1, . . . , EK} sampled
from a distribution of CL environments, i.e., Ei ∼ p(E) for i = 1, ...,K. Each envi-
ronment Ei contains of a network fφ and T datasets D1:T where the t-th dataset is
learned by fφ at time step t. Note that we will use task and time step interchange-
ably. To generate diverse CL environments, we obtain environments with different
initializations of the network fφ and shuffled task orders in the dataset when we
sample environments from p(E).

We define the state st of the environment as the validation accuracies A
(val)
t,1:t on

each seen task 1, ..., t from fφ at task t, i.e., st = [At,1, ..., At,t, 0, ..., 0], where we
use zero-padding on future tasks. The action space A is discrete and constructed
as described in Algorithm 1 (Section 4.2), such that the at ∈ A corresponds to
a task proportion pt used for sampling the replay memory Mt. We use a dense

reward based on the average validation accuracies at task t, i.e., rt = 1
t

∑t
i=1A

(val)
t,i ,

to ease exploration of the action space. The state transition distribution Pi(s
′|s, a)

represents the dynamics of the environment, which depend on the initialization of
fφ and also the task order in the dataset. More specifically, the dynamics represent
how the validation accuracies varies after fφ replays according to the action at when
learning the current task.

The procedure for training the policy goes as follows: The state st is obtained by

evaluating the network fφ on the validation sets D(val)
1:t after learning the t-th task
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from D(train)
t . Action at is selected under the policy πθ(a|st) parameterized by θ.

The action is converted into task proportion pt that is used for sampling the replay

memory Mt from the historical datasets. We then train classifier fφ with D(train)
t+1

and Mt, and obtain the reward rt+1 and the next state st+1 by evaluating fφ on

the validation sets D(val)
1:t+1. The collected transitions (st, at, rt+1, st+1) are used for

updating the policy. A new episode starts after fφ has learned the final task T .
We evaluate the learned policy by applying it to mitigate catastrophic forgetting

in new CL environments at test time. To foster generalization across environments,
we train the policy on multiple environments with different dynamics, such as task
orders and datasets, to learn from a diverse set of training data. The goal for the
agent is to maximize the sum of rewards in each training environment. At test time,
the policy is applied on new CL classifiers and datasets in the test environments
without added computational cost nor experience collection. In Section 4.4, we test
the policies generalization capability to new CL environments where the task orders
and datasets are unseen during training.

4.4 Experiments

In this section, we give an overview of the experimental results from Paper C and D.
In Paper C, we evaluate the benefits of replay scheduling in single CL environments
using MCTS for finding replay schedules. We perform extensive evaluation to show
that the replay schedules from MCTS can outperform the baselines across several CL
benchmarks and different backbones. In Paper D, we evaluate our RL-based frame-
work using DQN [119], A2C [120], and SAC [252] for learning policies that generalize
to new CL scenarios. We show that the learned policies can efficiently mitigate catas-
trophic forgetting in CL environments with new task orders and datasets that are
unseen during training.

Results on Replay Scheduling with Monte Carlo Tree Search

Here, we provide a selection of the experimental results from Paper C. We evaluate the
CL performance of RS-MCTS for varying memory sizes to illustrate the importance
of replay scheduling. Moreover, we show that replay scheduling can benefit any
replay-based method by combining scheduling with three recent CL methods, namely,
HAL [253], MER [254], and DER [230]. Finally, we demonstrate the efficiency benefits
of replay scheduling in settings when the memory size is smaller than the number of
classes. We give an overview of the experimental settings, see Paper C for the full
experimental results and hyperparameter settings.

Datasets and Architectures. We perform experiments on common CL bench-
mark datasets such as Split MNIST [211], Split Fashion-MNIST [255], Split notM-
NIST [256], Permuted MNIST [257], and Split CIFAR-100 [149,208] and Split mini-
Imagenet [258]. We use a 2-layer MLP with 256 hidden units and ReLU activations
for Split MNIST, Split FashionMNIST, Split notMNIST, and Permuted MNIST. For
Split CIFAR-10 and CIFAR-100, we use the CNN architecture used in [215,258,259],
and a reduced ResNet-18 from [208] for Split mini-Imagenet. We use a multi-head
output layer for each dataset, such that we assume that task labels are available
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at test time [260], except for Permuted MNIST where the network uses single-head
output layer.

Baselines. We compare our method against the following scheduling baselines:

� Random Schedule: Randomly select which tasks to replay.

� Equal Task Schedule (ETS): Replay all seen tasks equally.

� Heuristic Schedule: Replay tasks which validation performance is below a
tuned threshold found through hyperparameter searches.

Evaluation. We use ACC for measuring the CL performance

ACC =
1

T

T∑
j=1

A
(test)
T,j , (4.3)

where A
(test)
T,j is the accuracy of task j after learning the final task T . We measure

forgetting using Backward Transfer (BWT) [208], i.e.,

BWT =
1

T − 1

T−1∑
i=1

AT,i −Ai,i. (4.4)
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Figure 4.3: Performance comparisons with
ACC over different replay memory sizes M
for MCTS (Ours) and the baselines. All re-
sults have been averaged over 5 seeds.

Varying Memory Size. We show
that the replay schedules found by
MCTS improves the CL performance
across different memory sizes. In Fig-
ure 4.3, we observe that MCTS obtains
better task accuracies than ETS, espe-
cially for small memory sizes, in the
Task-Incremental Learning (IL) setting.
Both MCTS and ETS perform better
than Heuristic as M increases show-
ing that Heuristic requires careful tun-
ing of the validation accuracy threshold.
These results show that replay schedul-
ing can outperform the baselines, espe-
cially for small M , on both small and
large datasets across different backbone choices. In Paper C, we also evaluate how
the replay schedules from MCTS outperforms the baselines in the Class-IL setting
where task labels are absent.

Applying Scheduling to Recent Replay Methods. We show that replay schedul-
ing can be combined with any memory-based CL method to enhance the performance.
Table 4.1 shows the performance comparison between our MCTS against using Ran-
dom, ETS, and Heuristic schedules for each method. Especially for HAL and DER,
the schedule found by MCTS mostly outperforms the other schedules across the dif-
ferent datasets. For MER, the Heuristic baseline performs better than MCTS and
Permuted-MNIST and Split miniImagenet which could potentially be adjusted with
more hyperparameter searches. Furthermore, the Heuristic baseline occasionally did
not converge for some seeds which could indicate that this scheduling method is more
sensitive to the settings than the other scheduling methods. These results confirm
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Table 4.1: Performance comparison with ACC and BWT for Split MNIST, Split CIFAR-100, and
Split miniMagenet between scheduling methods MCTS (Ours), Random, ETS, and Heuristic com-
bined with replay methods HAL, MER, and DER.

Split MNIST Split CIFAR-100 Split miniImagenet

Method Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

HAL

Random 96.32 ± 1.77 -3.90 ± 2.28 35.90 ± 2.47 -17.37 ± 3.76 40.86 ± 1.86 -5.12 ± 2.23
ETS 97.21 ± 1.25 -2.80 ± 1.59 34.90 ± 2.02 -18.92 ± 0.91 38.13 ± 1.18 -8.19 ± 1.73
Heur-GD 97.69 ± 0.19 -2.22 ± 0.24 35.07 ± 1.29 -24.76 ± 2.41 39.51 ± 1.49 -5.65 ± 0.77
MCTS 97.96 ± 0.15 -1.85 ± 0.18 40.22 ± 1.57 -12.77 ± 1.30 41.39 ± 1.15 -3.69 ± 1.86

MER

Random 93.00 ± 3.22 -7.96 ± 4.15 42.68 ± 0.86 -35.56 ± 1.39 32.86 ± 0.95 -7.71 ± 0.45
ETS 92.97 ± 1.73 -8.52 ± 2.15 43.38 ± 1.81 -34.84 ± 1.98 33.58 ± 1.53 -6.80 ± 1.46
Heur-GD 94.30 ± 2.79 -6.46 ± 3.50 40.90 ± 1.70 -44.10 ± 2.03 34.22 ± 1.93 -7.57 ± 1.63
MCTS 96.44 ± 0.72 -4.14 ± 0.94 44.29 ± 0.69 -32.73 ± 0.88 32.74 ± 1.29 -5.77 ± 1.04

DER

Random 95.91 ± 2.18 -4.40 ± 2.46 56.17 ± 1.30 -29.03 ± 1.38 35.13 ± 4.11 -10.85 ± 2.92
ETS 98.17 ± 0.35 -2.00 ± 0.42 52.58 ± 1.49 -32.93 ± 2.04 35.50 ± 2.84 -10.94 ± 2.21
Heur-GD 94.57 ± 1.71 -6.08 ± 2.09 55.75 ± 1.08 -31.27 ± 1.02 43.62 ± 0.88 -8.18 ± 1.16
MCTS 99.02 ± 0.10 -0.91 ± 0.13 58.99 ± 0.98 -24.95 ± 0.64 43.46 ± 0.95 -9.32 ± 1.37
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Figure 4.4: Number of replayed sam-
ples per task for the 5-task datasets
for MCTS (Ours) and the baselines in
the tiny memory setting.

Method S-MNIST P-MNIST S-miniImagenet

Random 92.56 ± 2.90 70.02 ± 1.76 48.85 ± 1.38
A-GEM 94.97 ± 1.50 64.71 ± 1.78 32.06 ± 1.83
ER-Ring 94.94 ± 1.56 69.73 ± 1.13 49.82 ± 1.69
Uniform 95.77 ± 1.12 69.85 ± 1.01 50.56 ± 1.07

Ours 96.07 ± 1.60 72.52 ± 0.54 50.70 ± 0.54

Table 4.2: Performance comparison with ACC aver-
aged over 5 seeds in the 1 sample/class memory setting.
MCTS (Ours) has replay memory size M = 2 for S-
MNIST and M = 50 for P-MNIST and S-miniImagenet,
while the baselines replay all available memory samples.

that replay scheduling is important for the final performance given the same memory
constraints and it can benefit any existing CL framework.

Efficiency of Replay Scheduling. We illustrate the efficiency of replay schedul-
ing with comparisons to several common replay-based CL baselines in a memory
setting where we can only store 1 sample/class. Our goal is to investigate if schedul-
ing over which tasks to replay can be more efficient in situations where the memory
size is even smaller than the number of classes. To this end, we set the replay mem-
ory size for our method to M = 2 for the 5-task datasets. We then compare against
the most memory efficient CL baselines, namely A-GEM [261], ER-Ring [207] which
have shown promising results with 1 sample/class for replay, as well as with uniform
memory selection as reference. Additionally, we compare to using random replay
schedules (Random) with the same memory setting as for MCTS. We visualize the
memory usage for our method and the baselines when training on a 5-task dataset
in Figure 4.4. Table 4.2 shows the ACC for each method on Split MNIST, Permuted
MNIST, and Split miniImagenet. Despite using significantly fewer samples for replay,
MCTS performs on par with the baselines on most datasets, and better than them on
Permuted MNIST. These results indicate that replay scheduling can be even more
efficient than the common memory efficient replay-based methods, which indicate
that learning the time to learn is an important research direction in CL.
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Policy Generalization to New Continual Learning Scenarios

In this section, we present the experimental results from Paper D showing that the
policies learned with our RL-based framework using DQN, A2C and SAC are capable
of generalizing across CL environments with new task orders and datasets unseen
during training. We run experiments on 5-task datasets Split MNIST [211], Split
FashionMNIST [255], Split notMNIST [256], and Split CIFAR-10 [149] where there
are 2 classes/task. We resort to CL benchmark datasets with T = 5 tasks to have
feasible size of the discrete action space. The replay memory size is set to M = 10
in all experiments. See Paper D for full details on the experimental setup.

Policy Network Architectures. The input layer has size T − 1 where each unit
is inputting the task performances since the states are represented by the validation

accuracies st = [A
(val)
t,1 , ..., A

(val)
t,t , 0, ..., 0]. The current task can therefore be deter-

mined by the number of non-zero state inputs. For DQN and A2C, the output layer
has 35 units representing the possible actions at T = 5 in the discrete action space.
We use action masking on the output units to prevent the network from selection
invalid actions for constructing the replay memory at the current task. For SAC, we
use a Dirichlet policy for representing the task proportions in a continuous action
space, where we use zero-masking on the Dirichlet concentration parameters based
on the current task to prevent invalid actions. We select the closest action measured
in Euclidean distance from the discrete action space as the executed action for SAC
to establish fair comparison to DQN and A2C.

Baselines. We add two more heuristic scheduling baselines:

� Heuristic Local Drop (Heur-LD). Heuristic policy that replays tasks with
validation accuracy below a threshold proportional to the previous achieved
validation accuracy on the task.

� Heuristic Accuracy Threshold (Heur-AT). Heuristic policy that replays
tasks with validation accuracy below a fixed threshold.

Here, we name the Heuristic from the experiments in Paper C as Heuristic Global
Drop (Heur-GD). The Random and ETS baselines are the same as earlier.

Evaluation Protocol. We use ACC from Equation 4.3 to evaluate the perfor-
mance in the CL environments. The reported results have been evaluated on the
test set where the replay schedules are selected from evaluating the validation sets,
where 15% of the training data is used for creating the validation sets. To assess
generalization capability, we use a ranking method based on the ACC between the
methods in every test environment for comparison (see Paper D for details).

Generalization to New Task Orders. We show that the learned replay schedul-
ing policies can generalize to CL environments with previously unseen task or-
ders. We generate training and test environments with unique task orders for three
datasets, namely, Split MNIST, FashionMNIST, notMNIST, and CIFAR-10. Table
4.3 shows the average ranking for the RL algorithms and the baselines when being
applied in 10 test environments. Our learned policies obtain the best average ranking
across the datasets, where A2C performs mostly the best. We provide further in-
sights in the benefits of learning the replay scheduling policy by visualizing the replay
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Table 4.3: Average ranking (lower is better) across methods in the policy generalization experiments.
The best and second-best ranks are colored in green and orange respectively. We average the results
over 10 test environments.

New Task Order New Dataset

Method S-MNIST S-FashionMNIST S-notMNIST S-CIFAR-10 S-FashionMNIST S-notMNIST

Random 4.58 3.9 4.14 5.57 4.53 4.62
ETS 4.5 5.24 5.0 6.2 4.14 4.76

Heur-GD 5.07 4.91 3.74 4.63 3.26 5.31
Heur-LD 5.27 4.17 4.38 4.21 5.68 5.68
Heur-AT 4.92 4.6 6.28 3.89 4.21 4.97

DQN (Ours) 4.0 4.26 3.97 4.47 4.97 4.08
A2C (Ours) 3.56 5.23 3.84 3.21 4.76 3.38
SAC (Ours) 4.1 3.69 4.65 3.82 4.45 3.2
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Figure 4.5: Task accuracies and replay schedules from a single selected seed for A2C and ETS for
a Split CIFAR-10 environment.

schedule and task accuracy progress from A2C and ETS in one Split CIFAR-10 test
environment in Figure 4.5. The replay schedules are visualized with bubble plots,
where the bubble sizes represent the selected task proportions to use for composing
the replay memories at each task, and the bubble colors represent a task. We observe
that A2C decides to replay task 2 more than task 1 as the performance on task 2
decreases, which results in a slightly better ACC metric achieved by A2C than ETS.
These results show that the learned policy can flexibly consider replaying forgotten
tasks to enhance the CL performance.

Generalization to New Datasets. We show that the learned replay scheduling
policy is capable of generalizing to CL environments with new datasets unseen in the
training environments. We perform two sets of experiments:

1. train with environments generated with Split MNIST and FashionMNIST and
test on environments generated with Split notMNIST, and

2. train with environments generated with Split MNIST and notMNIST and test
on environments generated with Split FashionMNIST.

Table 4.3 shows the average ranking for the RL algorithms and the baselines when
generalization to test environments with new datasets. We observe that SAC, A2C,
and DQN generalizes to Split notMNIST environments better than the baselines.
However, the learned policies have difficulties to generalize to Split FashionMNIST
environments, which could be due to high variations in the dynamics between training
and test environments. The policy may exhibit state transition dynamics which has
not been experienced during training, which makes generalization difficult for the
RL algorithms. Potentially, the performance could be improved by generating more
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training environments for the agent to exhibit more variations in the CL scenarios
or by using other advanced RL methods which may generalize better [262].

4.5 Discussion

In this chapter, we summarized our contributions in CL presented in Paper C and
D. In Paper C, we focused on a new CL setting where historical data is accessible
at any time for mitigating catastrophic forgetting, but replaying all historical data is
prohibited due to processing time constraints. We then proposed learning the time
to learn for a CL system where we learn replay schedules over which tasks to replay
at different time steps. To demonstrate the importance of learning the time to learn,
we use MCTS to find the proper replay schedule and show that it can significantly
outperform fixed scheduling policies in terms of CL performance. In Paper D, we
address the efficiency of replay scheduling by proposing to use RL to learn the replay
scheduling policies that can generalize to new continual learning scenarios without
added computational cost. In the experiments, we show that the learned policies can
propose replay schedules that efficiently mitigate catastrophic forgetting in environ-
ments with previously unseen task orders and datasets. The proposed approaches
opens up for new research directions in replay-based CL that stems well with real-
world needs where training CL systems can be limited by processing time constraints
rather than storing historical data for maintaining overall performance.

We argue that replay scheduling brings current CL research closer to real-world
CL scenarios. Take for example image classification apps on mobile phones that
should assist VI people with recognizing objects in their surroundings. The users
may want to customize their apps to recognize new and personal items continuously.
The app should adapt fast from few samples while maintaining its performance on
the already known classes which is where CL comes in. However, as we saw in Paper
C and D, fixed replay policies show difficulties performing well given different task
orders, which potentially complicates generalizing to different users and new envi-
ronments. To this end, we could transfer a learned replay scheduling policy that
generalizes to new users and their unseen environments to mitigate catastrophic for-
getting efficiently for any user’s personal image recognition app. Moreover, a more
general case for the importance of replay scheduling in CL is scenarios where the
allowed replay memory size is smaller than the number of seen classes to remem-
ber. Scheduling over which task to replay at different times then becomes crucial to
balance efficient learning of new classes while retaining previously learned abilities.

Generalization in RL is a challenging research topic by itself [263–265]. The main
limitation with the RL-based framework proposed in Paper D is the requirements
of large amounts of diverse data and training time to enable the learned policy to
generalize well. This can be expensive due to the computational cost to generate the
CL environments since each state transition involves training the classifier on a CL
task. Moreover, we have currently only considered a discrete action space which is
hard to construct especially when the number of tasks is large. Using SAC with the
Dirichlet policy for selecting the task proportions was an initial step in the direction of
enabling replay scheduling policies for CL settings with long task horizons. In future
work, we would explore more advanced RL methods which can handle continuous
action spaces and generalize well [262].
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Finally, we want to highlight the privacy issues that can arise when applying
replay scheduling. Any replay-based CL method inherently can violate privacy if
raw samples are stored in the memory, but these risks can be mitigated by instead
storing compressed feature representations. Furthermore, as mentioned above, we
needed substantial amounts of data and training time for learning policies that gen-
eralize which increases the need for secure data storage solutions. As the states were
defined using validation accuracies rather than images, we have circumvented the
potential privacy issues as only the state transitions are stored from the generated
CL environments to use for training the policy.





Chapter 5

Conclusions and Future Directions

In this chapter, we give our conclusions from the works described in this thesis
(Section 5.1). Thereafter, we discuss potential future directions for work towards
better computer vision methods for assisting visually impaired (VI) people (Section
5.2), and provide some closing words to end the overview part of this thesis (Section
5.3).

5.1 Conclusions

We have divided our conclusions into two parts, where we first provide our insights
on the work on fine-grained image recognition (FGIR) of grocery items presented in
Chapter 3, and thereafter our insights on our proposed replay scheduling method for
continual learning (CL) presented in Chapter 4.

Fine-Grained Image Recognition of Groceries

Here, we provide our insights around the work presented in Chapter 3.

Dataset Collection. In Paper A, we presented a realistic dataset of images of gro-
ceries with a mobile phone to simulate a grocery shopping scenario using an assistive
vision app. Collecting these images in the grocery stores was indeed time consuming
and required effort. However, as there is a gap between benchmark datasets and
reality, we argue that evaluating computer vision methods on real-world data and
scenarios is critical for assistive vision. One major learned lesson is that we should
have collected the images by recording videos rather than taking snapshot images.
First of all, recording videos to classify the groceries would be more user-friendly and
probably more accurate than processing static images one at a time. The dataset
size would probably be enhanced as well, and the dataset could be used for eval-
uating both image and video models on supervised classification. In addition to
data quality, the selection of network architecture can also have high influence on
the final performance. Therefore, we should have performed a broader study over
different network types, especially those specialized for mobile computing [266,267],
while measuring memory consumption and compute requirements as computation
should be on-device to preserve user privacy [268]. It is also important to collect

45
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meta-data, such as hardware information, image resolutions, and geographical loca-
tion, about the mobile phone images to develop image recognition models that are
device-agnostic and robust in new environments. Finally, it would have been valuable
to include images from blind/low-vision collectors to measure the FGIR performance
with data from the actual users of assistive vision devices [269].

Utilizing Web-Scraped Views for FGIR. In Paper B, we showed that the web-
scraped iconic images and text descriptions in the dataset from Paper A are useful
for enhancing the FGIR performance. Our ablation study showed that the learned
latent representations improves the classification performance as the iconic images
structures the items based on visual similarities (e.g. color and shape) in the latent
space, while the text descriptions structures the items based on ingredients and fla-
vors. To provide more insights on how the web-scraped views boost the performance,
we could analyze the natural images with visual explanation methods, e.g., with class
activation maps [270, 271], to investigate whether the classifier recognizes the fine-
grained details in the items. However, performing such evaluation automatically
probably requires human annotations on the location of the details. Adding more
examples of iconic images and text descriptions may enable better modeling of the
view-specific variations to more accurately capture the shared information about the
views into the learned latent representations. In combination with more advanced
text processing [204, 206], this could potentially enhance the separation between vi-
sually similar packaged items with different ingredients to further improve the FGIR
performance. Finally, it would be interesting to study how the web-scraped views
can be utilized to enhance the data-efficiency in few-shot learning and CL scenarios,
which are important applications for assistive vision systems.

Replay Scheduling in Continual Learning

In this section, we provide our insights around the work presented in Chapter 4.

Benefits of Replay Scheduling. In Paper C, we proposed a slightly new CL
setting where 1) the historical is stored rather than deleted and 2) the replay memory
size is limited by processing time constraints instead of storage capacity. This setting
stems well with real-world needs as many major companies stores all their recorded
data [65,66]. We then showed in an ideal CL environment that scheduling over which
tasks to replay can significantly improve the final CL performance compared to using
fixed policies, e.g., replaying all tasks equally, especially with small replay memory
sizes. Consider a CL system where the number of seen classes is much larger than the
number of samples that the system has time to replay. In such scenario, it becomes
crucial for the system to have a policy scheduling over which tasks to replay for
reducing catastrophic forgetting efficiently. Furthermore, advances in CL are critical
for assistive vision devices to maintain recognition of new objects in ever-changing
environments without the need for re-training the systems from scratch. As these
systems could require on-device learning to maintain privacy, replay scheduling could
potentially retain the previous knowledge better than fixed scheduling policies and
reduce idle times when learning new abilities.

Learning Replay Scheduling Policies. In Paper D, we proposed a framework
based on reinforcement learning (RL) for learning policies scheduling which tasks
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to replay based on the current CL performance. Furthermore, we showed that the
replay scheduling policies could generalize to new CL scenarios without additional
computational cost nor interactions with the test environments. The proposed ap-
proach enables replay scheduling to be applied in standard CL settings. However,
as we only considered a discrete action space in the experiments, we need to extend
the framework to handle continuous action spaces that would scale better to larger
number of tasks. Furthermore, learning a policy that generalizes well to new scenar-
ios required large amounts of diverse data and training time, so we need to explore
more sample-efficient methods. We believe that our policy learning framework could
be beneficial for user personalization of assistive vision systems using CL. Since fixed
scheduling policies show difficulties generalizing to new CL scenarios in our experi-
ments, we could instead transfer a learned replay scheduling policy that potentially
can generalize to new users and their surroundings to reduce catastrophic forgetting
in their personal devices.

5.2 Future Directions

In this section, we discuss two future directions that we believe are important to
advance assistive vision technologies. First, we suggest future researchers in machine
learning and computer vision to work with federated learning [272] applied to assistive
vision devices to enhance the robustness in their image recognition performance.
Secondly, we highlight the importance of involving visually impaired (VI) people
throughout research processes to enhance the usefulness of the next generation of
assistive vision technologies.

Federated Learning

In recent years, there has been a growing interest for federated learning [272–274] in
the machine learning community. Federated learning involves leveraging the storage
and computational resources of remote devices, e.g., mobile phones, for training
predictive models locally on the device. The local model updates are transmitted to
a central server while user privacy is preserved by keeping the training data on the
device. The server collects model updates from several connected devices for training
a global model by aggregating the local model updates [274]. The global model can
then be distributed to the connected devices if necessary without sharing any data
between the devices.

Example Scenario. Here, we give an example application of federated learning
in the context of assistive vision. Alice and Bob are using an assistive vision app
installed on their mobile phones for recognizing groceries in a supermarket. Today,
Alice needs to buy milk and wants to recognize a milk package held in her hand.
She records a video with the phone camera which captures several frames of the milk
package that are then processed in the app. However, the app responds that this
milk package is an unknown item.Alice asks Charles, the store clerk, what item she
is holding, who tells Alice that this type of milk brand is new in the store. Charles
helps Alice with updating her app with the new milk class, such that her app will
recognize the milk in the future. The next day, Bob does his grocery shopping in
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the same supermarket as Alice. Bob notices a new milk package he has never tried
before, which is of the same class as the milk Alice bought the day before. Bob’s
app can successfully recognize the correct class of the milk package, although this
is the first time that Bob tries to recognize this kind of milk package with his app.
This is enabled through updating the assistive apps using federated learning, where
the central server has transmitted the current global model to Bob’s app after being
updated with Alice’s local model.

There are many interesting challenges that remains to tackle in federated learn-
ing. Li et al. [272] mentions challenges with statistical heterogeneity in the data
from different users, variability of the systems on each device, privacy concerns, and
expensive communication rounds between the server and the devices. From the per-
spective of this thesis, it would be valuable to study robustness to heterogeneity in the
data generated from different users in terms of data quality, sample frequency, and
context of where the data has been recorded. Here, an interesting challenge is how
to maintain fairness and accuracy across different devices, since the learned models
may become biased towards devices with large amounts of data as well as commonly
occurring groups of devices. Another relevant path to study is system heterogeneity
among the devices to determine how much the federated learning method can toler-
ate differences in, e.g., hardware and network connectivity. This is an important step
towards enabling image recognition methods to be more independent of the mobile
phone type, which in return may yield assistive vision apps that work equally well
across different geographical locations and income levels of the users.

Disability-First Approach in Development of Assistive Vision
Technologies

This section is for encouraging future researchers in computer vision and machine
learning to have their target user in mind for projects motivated by real-world appli-
cations such as assistive technologies. There exist many studies on computer vision-
based assistive technologies describing the benefits and challenges to ease everyday
life for VI people [23,47,275–277]. Essentially, mobile phones have been demonstrated
to be a useful tool for object recognition and navigation [14, 22, 47, 51], as many VI
people use these in their everyday life. Although computer vision on mobile phones
is evidently a good fit, it is important that technical experts remembers to involve VI
people throughout the research and development processes to ensure that the tech-
nology is in fact useful for blind/low-vision people. An example of close collaboration
between VI people and technical researchers is the collection of the recent ORBIT
dataset [15, 269]. Here, the authors took a disability-first approach to produce an
object recognition dataset to benchmark computer vision methods in real-world sce-
narios for VI people. The data collection was only performed by blind/low-vision
participants, who were instructed on how to collect the data as well as informed
of various benefits and challenges with current computer vision methods. By en-
gaging continuously with the participants, the authors even re-evaluated the data
collection process to ease the effort for the participants while ensuring that the data
is useful for training object recognizers. Maintaining the disability-first approach
could potentially bring more insights to technical experts in, e.g., computer vision,
human-computer interaction, and user experience, on the challenges that occur for
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VI people, such that assistive vision technologies can be built that satisfy the needs
of the target user.

To further maintain the usefulness of developed assistive vision technologies, the
technical experts needs to consider challenges on fairness in computer vision sys-
tems and privacy of the users. Several works have shown that current computer
vision methods suffer from biases that can disadvantage users based on their gen-
der [34,278,279], geographical location [32], and co-occurrences between objects and
surrounding contexts [280]. Such challenges on fairness [281–283] and various types
of distribution shifts [284] will be crucial to tackle for establishing trust-worthy im-
age recognition systems for the practitioners. Additionally, preserving user privacy
to avoid unintended leakages of sensitive information will be key to enhance the util-
ity of developed computer vision systems [173, 285]. The privacy of bystanders also
needs to be accounted for as they could be photographed by mobile and wearable
devices for assistive vision [24, 286]. However, for a bystander, it is non-trivial how
one should approach a VI person and ask them to turn off their device for the sake
of avoiding being caught on camera. This matter of social acceptance between as-
sistive vision users and bystanders needs to be further studied in realistic settings to
understand what requirements that the society wishes to establish on future assistive
vision technologies.

5.3 Final Words

In this thesis, motivated from assisting people with visual impairments, we have
presented two approaches for training image classifiers for fine-grained and continual
visual recognition. An essential next step for evaluating the contributions would
have been to deploy the methods on mobile phones for testing their performance in
real-world environments. To make the future for assistive vision technologies more
fruitful, it is key that the developed methods can guarantee responding to the user
in real-time, and that updating the methods on new events can be performed easily
with few samples. Finally, we need to further discuss where and when the technology
is to be used in practice to enhance the benefits with computer vision-based assistive
vision for all involved people.
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Abstract

Image classification models built into visual support systems and other assistive
devices need to provide accurate predictions about their environment. We focus
on an application of assistive technology for people with visual impairments,
for daily activities such as shopping or cooking. In this paper, we provide a
new benchmark dataset for a challenging task in this application – classifica-
tion of fruits, vegetables, and refrigerated products, e.g. milk packages and
juice cartons, in grocery stores. To enable the learning process to utilize mul-
tiple sources of structured information, this dataset not only contains a large
volume of natural images but also includes the corresponding information of
the product from an online shopping website. Such information encompasses
the hierarchical structure of the object classes, as well as an iconic image of
each type of object. This dataset can be used to train and evaluate image
classification models for helping visually impaired people in natural environ-
ments. Additionally, we provide benchmark results evaluated on pretrained
convolutional neural networks often used for image understanding purposes,
and also a multi-view variational autoencoder, which is capable of utilizing the
rich product information in the dataset.

1 Introduction

In this paper, we focus on the application of image recognition models implemented
into assistive technologies for people with visual impairments. Such technologies
already exist in the form of mobile applications, e.g. Microsoft’s Seeing AI [1] and
Aipoly Vision [2], and as wearable artificial vision devices, e.g. Orcam MyEye [3] and
the Sound of Vision system introduced in [4]. These products have the ability to
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Dataset
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Figure 1: The primary contribution of this paper is a dataset of grocery items, for the purpose
of training a visual recognition system to aid visually impaired people. The dataset is organized
according to a hierarchical class structure, as illustrated above. A novel aspect of the dataset is that
each class, apart from the semantic label, also has a visual label in the form of an iconic image.

support people with visual impairments in many different situations, such as reading
text documents, describing the user’s environment and recognizing people the user
may know.

We here address a complementary scenario not handled by current systems on the
market: visual support when shopping for grocery items considering a large range of
eatable objects, including fruits, vegetables, milk, and juices. In the case of fruits and
vegetables, these are usually stacked in large bins in grocery stores as shown in Figure
2(a-f). A common problem in grocery stores is that similar items are often stacked
next to each other; therefore, items are often misplaced into neighboring bins. Figure
2a shows a mix of red and green apples, where it might be difficult for the system to
determine which kind of apple is the actual target. Humans can distinguish between
groceries without vision to some degree, e.g. by touching and smelling them, but it
requires prior knowledge about texture and fragrance of food items.

Moreover, in addition to raw grocery items, there are also items that can only
be differentiated with the help of visual information, e.g. milk, juice, and yogurt
cartons, see Figure 2(g-i). Such items usually have barcodes, that are readable using
the existing assistive devices described above. However, the barcodes are not easily
located by visually impaired persons. Thus, an assistive vision device that fully relies
on natural image understanding would be of significant added value for a visually
impaired person shopping in a grocery store.

Image recognition models used for this task typically require training images
collected in similar environments. However, current benchmark datasets, such as
ImageNet [5] and CIFAR-100 [6], do contain images of fruits and vegetables, but
are not suitable for this type of assistive application, since the target objects are
commonly not presented in this type of natural environments, with occlusion and
cluttered backgrounds. To address this issue, we present a novel dataset containing
natural images of various raw grocery items and refrigerated products, e.g. milk,
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juice, and yogurt, taken in grocery stores. As part of our dataset, we collect images
taken with single and multiple target objects, from various perspectives, and with
noisy backgrounds.

In computer vision, previous studies have shown that model performance can be
improved by extending the model to utilize other data sources, e.g. text, audio, in
various machine learning tasks [7–10]. Descriptions of images are rather common to
computer vision datasets, e.g. Flickr30k [11], whereas the datasets in [8,12] includes
both descriptions and a reference image with clean background to some objects.
Therefore, in addition to the natural images, we have collected iconic images with
a single object centered in the image (see Figure 3) and a corresponding product
description to each grocery item. In this work, we also demonstrate how we can
benefit from using additional information about the natural images by applying the
multi-view generative model.

To summarize, the contribution of this paper is a dataset of natural images of raw
and refrigerated grocery items, which could be used for evaluating and training image
recognition systems to assist visually impaired people in a grocery store. The dataset
labels have a hierarchical structure with both coarse- and fine-grained classes (see
Figure 1). Moreover, each class also has an iconic image and a product description,
which makes the dataset applicable to multimodal learning models. The dataset is
described in Section 3.

We provide multiple benchmark results using various deep neural networks, such
as Alexnet [13], VGG [14], DenseNet [15], as well as deep generative models, such as
VAE [16]. Furthermore, we adapt a multi-view VAE model to make use of the iconic
images for each class (Section 4), and show that it improves the classification accuracy
given the same model setting (Section 5). Last, we discuss possible future directions
for fully using the additional information provided with the dataset and adopt more
advanced machine learning methods, such as visual-semantic embeddings, to learn
efficient representations of the images.

2 Related Work

Many popular image datasets have been collected by downloading images from the
web [5,6,8,12,17–21]. If the dataset contains a large amount of images, it is convenient
to make use of crowdsourcing to get annotations for recognition tasks [5, 6, 22]. For
some datasets, the crowdsourcers are also asked to put bounding boxes around the
object to be labeled for object detection tasks [8, 17, 20]. In [18] and [6], the target
objects are usually centered and takes up most content of the image itself. Another
significant characteristic is that web images usually are biased in the sense that they
have been taken with the object focus in mind; they have good lighting settings
and are typically clean from occlusions, since the collectors have used general search
words for the object classes, e.g. car, horse, or apple.

Some datasets include additional information about the images beyond the sin-
gle class label, e.g. text descriptions of what is present in the image and bounding
boxes around objects. These datasets can be used in several different computer vi-
sion tasks, such as image classification, object detection, and image segmentation.
Structured labeling is another important property of a dataset, which provides flexi-
bility when classifying images. In [8,12], all of these features exist and moreover they



80 PAPER A. HIERARCHICAL GROCERY STORE IMAGE DATASET

(a) Royal Gala (b) Golden Deli-
cious

(c) Orange

(d) Aubergine (e) Onion (f) Zucchini

(g) Apple Juice (h) Milk Medium
Fat

(i) Yoghurt Nat-
ural

Figure 2: Examples of natural images in our
dataset, where each image have been taken in-
side a grocery store. Image examples of fruits,
vegetables and refrigerated products are pre-
sented in each row respectively.

(a) Royal Gala (b) Golden Deli-
cious

(c) Orange

(d) Aubergine (e) Onion (f) Zucchini

(g) Apple Juice (h) Milk Medium
Fat

(i) Yoghurt Nat-
ural

Figure 3: Examples of iconic images down-
loaded from a grocery shopping website, which
corresponds to the target items in the images
in Figure 2.

include reference images to each object class, which in [12] is used for labeling mul-
tiple categories present in images, while in [8] these images are used for fine-grained
recognition. Our dataset includes a reference image, i.e. the iconic image, and a
product description for every class, and we have also labeled the grocery items in a
structured manner.

Other image datasets of fruits and vegetables for classification purposes are the
FIDS30 database [23] and the dataset in [24]. The images in FIDS30 were downloaded
from the web and contain background noise as well as single or multiple instances of
the object. In [24], all pixels belonging to the object are extracted from the original
image, such that all images have white backgrounds with the same brightness condi-
tion. There also exist datasets for detecting fruits in orchards for robotic harvesting
purposes, which are very challenging since the images contain plenty of background
and various lighting conditions, and the targeted fruits are often occluded or of the
same color as the background [25,26].

Another dataset that is highly relevant to our application need is presented in [27].
They collected a dataset for training and evaluating the image classifier by extracting
images from video recordings of 23 main classes, which are subdivided into 98 classes,
of raw grocery items (fruits and vegetables) in different grocery stores. Using this
dataset, a mobile application was developed to recognize food products in grocery
store environments, which provides the user with details and health recommendations
about the item along with other proposals of similar food items. For each class,
there exists a product description with nutrition values to assist the user in shopping
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scenarios. The main difference between this work and our dataset is firstly the clean
iconic images (visual labels) for each class in our dataset, and secondly that we have
also collected images of refrigerated items, such as dairy and juice containers, where
visual information is required to distinguish between the products.

3 Our Dataset

Figure 4: Histogram over the number of
images in each class in the dataset.

We have collected images from fruit and
vegetable sections and refrigerated sections
with dairy and juice products in 18 differ-
ent grocery stores. The dataset consists of
5125 images from 81 fine-grained classes,
where the number of images in each class
range from 30 to 138. Figure 4 displays a
histogram over the number of images per
class. As illustrated in Figure 1, the class
structure is hierarchical, and there are 46
coarse-grained classes. Figure 2 shows ex-
amples of the collected natural images. For
each fine-grained class, we have downloaded
an iconic image of the item and also a product description including origin country,
an appreciated weight and nutrient values of the item from a grocery store website.
Some examples of downloaded iconic images can be seen in Figure 3.

Our aim has been to collect the natural images under the same condition as they
would be as part of an assistive application on a mobile phone. All images have been
taken with a 16-megapixel Android smartphone camera from different distances and
angles. Occasionally, the images include other items in the background or even items
that have been misplaced in the wrong shelf along with the targeted item. It is
important that image classifiers that are used for assisting devices are capable of
performing well with such noise since these are typical settings in a grocery store
environments. The lighting conditions in the images can also vary depending on
where the items are located in the store. Sometimes the images are taken while the
photographer is holding the item in the hand. This is often the case for refrigerated
products since these containers are usually stacked compactly in the refrigerators.
For these images, we have consciously varied the position of the object, such that the
item is not always centered in the image or present in its entirety.

We also split the data into a training set and test set based on the application
need. Since the images have been taken in several different stores at specific days and
time stamps, parts of the data will have similar lighting conditions and backgrounds
for each photo occasion. To remove any such biasing correlations, all images of a
certain class taken at a certain store are assigned to either the test set or training
set. Moreover, we balance the class sizes to as large extent as possible in both the
training and test set. After the partitioning, the training and test set contains 2640
and 2485 images respectively. Predefining a training and test set also makes it easier
for other users to compare their results to the evaluations in this paper.

The task is to classify natural images using mobile devices to aid visually im-
paired people. The additional information such as the hierarchical structure of the
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class labels, iconic images, and product descriptions can be used to improve the
performance of the computer vision system. Every class label is associated with a
product description. Thus, the product description itself can be part of the output
for visually impaired persons as they may not be able to read what is printed on a
carton box or a label tag on a fruit bin in the store.

The dataset is intended for research purposes and we are open to contributions
with more images and new suitable classes. Our dataset is available at https:

//github.com/marcusklasson/GroceryStoreDataset. Detailed instructions on how to
contribute to the dataset can be found on our dataset webpage.

4 Classification Methods

We here describe the classification methods and approaches that we have used to
provide benchmark results to the dataset. We apply both deterministic deep neu-
ral networks as well as a deep generative model used for representation learning to
the natural images that we have collected. Furthermore, we utilize the additional
information – iconic images – from our dataset with a multi-view deep generative
model. This model can utilize different data sources and obtain superior represen-
tation quality as well as high interpretability. For a fair evaluation, we use a linear
classifier with the learned representation from the different methods.

Deep Neural Networks. CNNs have been the state-of-the-art models in im-
age classification ever since AlexNet [13] achieved the best classification accuracy
in ILSVRC in 2012. However, in general, computer vision models require lots of
labeled data to achieve satisfactory performance, which has resulted in interest for
adapting CNNs that have already been trained on a large amount of training data
to other image datasets. When adapting pretrained CNNs to new datasets, we can
either use it directly as a feature extractor, a.k.a use the off-the-shelf features, [28,29],
or fine-tune it [30–34]. Using off-the-shelf features, we need to specify which feature
representation we should extract from the network and use these for training a new
classifier. Fine-tuning a CNN involves adjusting the pretrained model parameters,
such that the network can e.g. classify images from a dataset different from what the
CNN was trained on before. We can either choose to fine-tune the whole network or
select some layer parameters to adjust while keeping the others fixed. One important
factor on deciding which approach to choose is the size of the new dataset and how
similar the new dataset is to the dataset which the CNN was previously trained on.
A rule of thumb here is that the closer the features are to the classification layer, the
features become more specific to the training data and task [33].

Using off-the-shelf CNN features and fine-tuned CNNs have been successfully ap-
plied in [28,29] and [30,31,34] respectively. In [28,29], it is shown that the pretrained
features have sufficient representational power to generalize well to other visual recog-
nition tasks with simple linear classifiers, such as Support Vector Machines (SVMs),
without fine-tuning the parameters of the CNN to the new task. In [30,34], all CNN
parameters are fine-tuned, whereas in [31] the pretrained CNN layer parameters are
kept fixed and only an adaptation layer of two fully connected layers are trained
on the new task. The results from these works motivate why we should evaluate

https://github.com/marcusklasson/GroceryStoreDataset
https://github.com/marcusklasson/GroceryStoreDataset
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our dataset on fine-tuned CNNs or linear classifiers trained on off-the-shelf feature
representations instead of training an image recognition model from scratch.

Variational Autoencoders with only natural images. Deep generative mod-
els, e.g. the variational autoencoder (VAE) [16, 35, 36], have become widely used
in the machine learning community thanks to their generative nature. We thus use
VAEs for representation learning as the second benchmarking method. For efficiency,
we use low-level pretrained features from a CNN as inputs to the VAE.

The latent representations from VAEs are encodings of the underlying factors for
how the data are generated. VAEs belongs to the family of latent variable models,
which commonly has the form pθ(x, z) = p(z)pθ(x|z), where p(z) is a prior distribu-
tion over the latent variables z and pθ(x|z) is the likelihood over the data x given z.
The prior distribution is often assumed to be Gaussian, p(z) = N (z |0, I), whereas
the likelihood distribution depends on the values of x. The likelihood pθ(x|z) is
referred to as a decoder represented as a neural network parameterized by θ. An en-
coder network qφ(z|x) parameterized by φ is introduced as an approximation of the
true posterior pθ(z|x), which is intractable since it requires computing the integral
pθ(x) =

∫
pθ(x, z) dz. When the prior distribution is a Gaussian, the approximate

posterior is also modeled as a Gaussian, qφ(z|x) = N (z |µ(x),σ2(x)� I), with some
mean µ(x) and variance σ2(x) computed by the encoder network. The goal is to
maximize the marginal log-likelihood by defining a lower bound using qφ(z|x):

log pθ(x) ≥ L(θ,φ; x) =Eqφ(z|x) [ log pθ(x|z) ]

−DKL(qφ(z|x) || p(z)).
(1)

The last term is the Kullback-Leibler (KL) divergence of the approximate poste-
rior from the true posterior. The lower bound L is called the evidence lower bound
(ELBO) and can be optimized with stochastic gradient descent via backpropaga-
tion [16, 37]. VAE is a probabilistic framework. Many extensions such as utilizing
structured priors [38] or using continual learning [39] have been explored. In the
following method, we describe how to make use of the iconic images while retaining
the unsupervised learning setting in VAEs.

Utilizing iconic images with multi-view VAEs. Utilizing extra information
has shown to be useful in many applications with various model designs [38, 40–43].
For computer vision tasks, natural language is the most commonly used modality to
aid the visual representation learning. However, the consistency of the language and
visual embeddings has no guarantee. As an example with our dataset, the product
description of a Royal Gala apple explains the appearance of a red apple. But if
the description is represented with word embeddings, e.g. word2vec [44], the word
’royal’ will probably be more similar to the words ’king’ and ’queen’ than ’apple’.
Therefore, if available, additional visual information about objects might be more
beneficial for learning meaningful representations instead of text. In this work, with
our collected dataset, we propose to utilize the iconic images for the representation
learning of natural images using a multi-view VAE. Since the natural images can
include background noise and grocery items different from the targeted one, the role
of the iconic image will be to guide the model to which features that are of interest
in the natural image.
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Figure 5: The architectures for the classification methods described in Section 4. In this paper,
we use either a pretrained AlexNet, VGG16 or DenseNet-169 as the CNN feature extractor, but
it may be replaced with any CNN architecture. Note that the pretrained CNN can be fine-tuned.
The encoder and decoder of the VAE in 5b consist of two fully-connected layers. VAE-CCA in 5c
uses the DCGAN architecture as an iconic image decoder and the same encoder and feature vector
decoder as the VAE.

The VAE can be extended to modeling multiple views of data, where a latent vari-
able z is assumed to have generated the views [40,42]. Considering two views x and
y, the joint distribution over the paired random variables (x, y) and latent variable
z can be written as pθ(x,y, z) = p(z)pθ(1)(x | z)pθ(2)(y | z), where both pθ(1)(x | z)
and pθ(2)(y | z) are represented as neural networks with parameters θ(1) and θ(2).
Assuming that the latent variable z can reconstruct both x and y when only x is
encoded into z by the encoder qφ(z|x), then the ELBO is written as

log pθ(x,y) ≥L(θ,φ; x,y)

=Eqφ(z|x) [ log pθ(1)(x|z) + log pθ(2)(y|z) ]

−DKL(qφ(z|x) || p(z)).

(2)

This model is referred to as variational autoencoder canonical correlation analysis
(VAE-CCA) and was introduced in [42]. The main motivation for using VAE-CCA
is that the latent representations need to contain information about reconstructing
both natural and iconic images. The main motivation for using VAE-CCA is that
the latent representation needs to preserve information about how both the natural
and iconic images are reconstructed. This also allows us to produce iconic images
from new natural images to enhance the interpretability of the latent representation
of VAE-CCA (see Section 5) [40].

5 Experimental Results

We apply the three different types of models described in Section 4 to our dataset
and evaluate their performance. The natural images are propagated through a CNN
pretrained on ImageNet to extract feature vectors. We experiment with both the off-
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Table 1: Fine-grained classification (81 classes) accuracies with the methods described in Section
5.1. Each row displays from which network architecture and layer that we extracted the feature
vectors of the natural images. The columns show the result from the classifiers that we used (see
Section 5.1).

SVM SVM-ft VAE+SVM VAE+SVM-ft VAE-CCA+SVM VAE-CCA+SVM-ft
AlexNet6 69.2 72.6 65.6 70.7 67.8 71.5
AlexNet7 65.0 70.7 63.0 68.7 65.0 70.9
VGG166 62.1 73.3 57.5 71.9 60.7 73.0
VGG167 57.3 71.7 56.8 67.8 56.8 71.3

DenseNet-169 72.5 85.0 65.4 79.1 72.6 80.4

the-shelf features as well as fine-tuning the CNN. When using off-the-shelf features,
we simply extract feature vectors and train an SVM on those. For the fine-tuned
CNN, we report both results from the softmax classifier used in the actual fine-tuning
procedure and training an SVM with extracted fine-tuned feature vectors.

These extracted feature vectors are also used for VAE and VAE-CCA which
makes further compression. We perform classification for those VAE based models by
training a classifier, e.g. an SVM, on the data encoded into the latent representation.
We use this classification approach for both VAE and VAE-CCA. In all classification
experiments, except when we fine-tune the CNN, we use a linear SVM trained with
the one-vs-one approach as in [29].

We experiment with three different pretrained CNN architectures, namely AlexNet
[13], VGG16 [14] and DenseNet-169 [15]. For AlexNet and VGG16, we extract fea-
ture vectors of size 4096 from the two last fully connected (FC) layers before the
classification layer. The features from the nth hidden layer are denoted as AlexNetn
and VGG16n. As an example, the last hidden FC layer in AlexNet is denoted as
AlexNet7, the input of which is output from AlexNet6. For DenseNet-169, we ex-
tract the features of size 1664 from the average pooling layer before its classification
layer.

5.1 Experimental Setups

The following setups were used in the experiments:

Setup 1. Train an SVM on extracted off-the-shelf features from a pretrained CNN,
which is denoted as SVM in the results. We also fine-tune the CNN by replacing
the final layer with a new softmax layer and denote these results as Fine-tune. We
denote training an SVM on extracted finetuned feature vectors as SVM-ft.

Setup 2. Extract feature vectors with a pretrained CNN of the natural images
and learn a latent representation z with a VAE. Then the data is encoded into the
latent space and we train an SVM with these latent representations, which used for
classification. We denote the results as VAE+SVM when using off-the-shelf feature
vectors, whereas using the fine-tuned feature vectors are denoted as VAE+SVM-ft.
In all experiments with the VAE, we used the architecture from [45], i.e. the latent
layer having 200 hidden units and both encoder and decoder consisting of two FC
layers with 1,000 hidden units each.

Setup 3. Each natural image is paired with its corresponding iconic image. We
train VAE-CCA similarly as the VAE, but instead, we learn a joint latent repre-
sentation that is used to reconstruct the extracted feature vectors x and the iconic
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Table 2: Coarse-grained classification (46 classes) accuracies with
an SVM for the methods described in Section 5.1 that uses off-
the-shelf feature representations. Each row displays from net-
work architecture and layer that we extracted the feature vectors
of the natural images and the columns show the result for the
classification methods.

SVM VAE+SVM VAE-CCA+SVM
AlexNet6 78.0 74.2 76.4
AlexNet7 75.4 73.2 74.4
VGG166 76.6 74.2 74.9
VGG167 72.8 71.7 72.3

DenseNet-169 85.2 79.5 82.0

Table 3: Fine-grained classi-
fication accuracies from fine-
tuned CNNs pretrained on
ImageNet, where the column
shows which architecture that
has been fine-tuned. A stan-
dard softmax layer is used as
the last layer.

Fine-tune
AlexNet 69.3
VGG16 73.8

DenseNet-169 84.0

images y. The classification is performed with the same steps as in Setup 2 and
denotes the results similarly with VAE-CCA+SVM and VAE-CCA+SVM-ft. Our
VAE-CCA model takes the feature vectors x as input and encodes them into a latent
layer with 200 hidden units. The encoder and the feature vector decoder uses the
same architecture, i.e. two FC layers with 512 hidden units, whereas the iconic image
decoder uses the DCGAN [46] architecture.

Figure 5 displays the three experimental setups described above. We report both
fine-grained and coarse-grained classification results with an SVM in Table 1 and 2
respectively. In Table 3, we report the fine-grained classification results from fine-
tuned CNNs.

When fine-tuning the CNNs, we replace the final layer with a softmax layer appli-
cable to our dataset with randomly initialized weights drawn from a Gaussian with
zero mean and standard deviation 0.01 [34]. For AlexNet and VGG16, we fine-tune
the networks for 30 epochs with two different learning rates, 0.01 for the new clas-
sification layer and 0.001 for the pretrained layers. Both learning rates are reduced
by half after every fifth epoch. The DenseNet-169 is fine-tuned for 30 epochs with
momentum of 0.9 and an initial learning rate of 0.001, which decays with 10−6 after
each epoch. We report the classification results from the softmax activation after
the fine-tuned classification layer. We also report classification results from an SVM
trained with feature representations from a fine-tuned CNN, which are extracted
from FC6 and FC7 of the AlexNet and VGG16 and from the last average pooling
layer in DenseNet-169.

The VAE and VAE-CCA models are trained for 50 epochs with Adam [47] for
optimizing the ELBOs in Equation 3 and 2 respectively. We use a constant learning
rate of 0.0001 and set the minibatch size to 64. The extracted feature vectors are
rescaled with standardization before training the VAE and VAE-CCA models to
stabilize the learning.

5.2 Results

The fine-grained classification results for all methods using an SVM as classifier are
shown in Table 1. We also provide coarse-grained classification results for some of
the methods in Table 2 to demonstrate the possibility of hierarchical evaluation that
our labeling of the data provides (see Figure 1). The accuracies in the coarse-grained
classification are naturally higher than the accuracies in the corresponding columns in
Table 1. Table 3 shows fine-grained classification accuracies from a softmax classifier
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 6: Examples of six natural images in the test set that have been decoded into product iconic
images by the iconic image decoder pθ(2) (y | z) using VAE-CCA model as in Figure 5c. This result
is obtained with the fine-tuned DenseNet-169 features, which corresponds to VAE-CCA+SVM-ft in
Table 1. We show the natural image and corresponding decoded iconic image next to each other.
The classes for all images are (a, b) Royal Gala Apple, (c, d) Brown Cap Mushroom, (e, f) Oatly
Oatgurt, (g, h) Orange, (i, j) Onion, and (k, l) Arla Natural Yogurt.

in the fine-tuned CNNs. We note that fine-tuning the networks gives consistently
better results than training an SVM on off-the-shelf features (see Table 1).

Fine-tuning the entire network results improves the classification performance
consistently for each method in Table 1. The performance is clearly enhanced for
features extracted from fine-tuned VGG16 and DenseNet-169, which improves the
classification accuracy by 10% in most cases for SVM-ft, VAE+SVM-ft, and VAE-
CCA+SVM-ft. For AlexNet and VGG16, we see that the performance drops when
extracting the features from layer FC7 instead of FC6. The reason might be that
the off-the-shelf features in FC7 are more difficult to transfer to other datasets since
the weights are biased towards classifying objects in the ImageNet database. The
performance drops also when we use fine-tuned features, which could be due to the
small learning rate we use for the pretrained layers, such that the later layers are still
ImageNet-specific. We might circumvent this drop by increasing the learning rate
for the later pretrained layers and keeping the learning rate for earlier layers small.

The VAE-CCA model achieves mostly higher classification accuracies than the
VAE model in both Table 1 and 2. This indicates that the latent representation
separates the classes more distinctly than the VAE by jointly learning to reconstruct
the extracted feature vectors and iconic images. However, further compressing the
feature vectors with VAE and VAE-CCA will lower the classification accuracy com-
pared to applying the feature vectors to a classifier directly. Since both VAE and
VAE-CCA compresses the feature vectors into the latent representation, there is a
risk of losing information about the natural images. We might receive better per-
formance by increasing the dimension of the latent representation at the expense of
speed in both training and classification.

In Figure 6, we show results from the iconic image decoder pθ(2)(y | z) when
translating natural images from the test set into iconic images with VAE-CCA and
a fine-tuned DenseNet-169 as feature extractor. Such visualization can demonstrate
the quality of the representation using the model, as well as enhancing the inter-
pretability of the method. Using VAE-CCA in the proposed manner, we see that
with challenging natural images, the model is still able to learn an effective represen-
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tation which can be decoded to the correct iconic image. For example, some pears
have been misplaced in the bin for Royal Gala apples in Figure 6a, but still the image
decoder manages to decode a blurry red apple seen in Figure 6b. In Figure 6h, a
mix of an orange and an apple are decoded from a bin of oranges in Figure 6g, which
indicates these fruits are encoded close to each other in the learned latent space.
Even if Figure 6e includes much of the background, the iconic image decoder is still
able to reconstruct the iconic images accurately in Figure 6f, which illustrates that
the latent representation is able to explain away irrelevant information in the natural
image and preserved the features of the oatgurt package. Thus, using VAE-CCA
with iconic images as the second view not only advances the classification accuracy
but also provides us with the means to understand the model.

6 Conclusions

This paper presents a dataset of images of various raw and packaged grocery items,
such as fruits, vegetables, and dairy and juice products. We have used a structured
labeling of the items, such that grocery items can be grouped into more general
(coarse-grained) classes and also divided into fine-grained classes. For each class,
we have a clean iconic image and a text description of the item, which can be used
for adding visual and semantic information about the items in the modeling. The
intended use of this dataset is to train and benchmark assistive systems for visually
impaired people when they shop in a grocery store. Such a system would complement
existing visual assistive technology, which is confined to grocery items with barcodes.
We also present preliminary benchmark results for the dataset on the task of image
classification.

We make the dataset publicly available for research purposes at https://github.com/
marcusklasson/GroceryStoreDataset. Additionally, we will both continue collecting
natural images, as well as ask for public contributions of natural images in shopping
scenarios to enlarge our dataset.

For future research, we will advance our model design to utilize the structured
nature of our labels. Additionally, we will design a model that use the product
description of the objects in addition to the iconic images. One immediate next step
is to extend the current VAE-CCA model to three views, where the third view is the
description of the product.
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Abstract

An essential task for computer vision-based assistive technologies is to help
visually impaired people to recognize objects in constrained environments, for
instance, recognizing food items in grocery stores. In this paper, we introduce a
novel dataset with natural images of groceries – fruits, vegetables, and packaged
products – where all images have been taken inside grocery stores to resemble
a shopping scenario. Additionally, we download iconic images and text de-
scriptions for each item that can be utilized for better representation learning
of groceries. We select a multi-view generative model, which can combine the
different item information into lower-dimensional representations. The experi-
ments show that utilizing the additional information yields higher accuracies on
classifying grocery items over only using the natural images. We observe that
iconic images help to construct representations separated by visual differences
of the items, while text descriptions enable the model to distinguish between
visually similar items by different ingredients.

1 Introduction

In recent years, computer vision-based assistive technologies have been developed for
supporting people with visual impairments. Such technologies exist in the form of
mobile applications, e.g., Microsoft’s Seeing AI [1] and Aipoly Vision [2], and as wear-
able artificial vision devices, e.g., Orcam MyEye [3], Transsense [4], and the Sound
of Vision system [5]. These products can support people with visual impairments
in many different situations, such as reading text documents, describing the user’s
environment, and recognizing people the user may know. In this paper, we focus
on an application that is essential for assistive vision, namely visual support when
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Figure 1: Examples of natural images in our
dataset, where each image has been taken in-
side a grocery store. Image examples of fruits,
vegetables, and refrigerated products are pre-
sented in each row respectively.

Figure 2: Examples of iconic images down-
loaded from a grocery shopping website, which
corresponds to the target items in the images
in Figure 1.

shopping for grocery items considering a large range of eatable objects, including
fruits, vegetables, and refrigerated products, e.g., milk and juice packages.

Grocery shopping with low vision capabilities can be difficult for various reasons.
For example, in grocery store sections for raw groceries, the items are often stacked in
large bins as shown in Figure 1(a-f). Additionally, similar items are usually stacked
next to each other, and therefore, items are can be misplaced into neighboring bins.
Humans can distinguish between groceries without vision to some degree, e.g., by
touch and smell, but it requires prior knowledge about texture and fragrance of
food items. Furthermore, packaged items, e.g., milk, juice, and yoghurt cartons, can
only be differentiated with the help of visual information (see Figure 1(g-i)). Such
items usually have barcodes, that are readable using the existing assistive vision
devices described above. Even if using a barcode detector is a clever solution, it
can be inconvenient and exhausting always having to detect barcodes of packaged
items. Therefore, an assistive vision device that relies on natural images would be of
significant value for a visually impaired person in a grocery store.

For an image classification model to be capable of recognizing grocery items in
the setting of grocery shopping, we need image data from grocery store environments.
In our previous work [6], we addressed this by collecting a novel dataset containing
natural images of various raw grocery items and refrigerated products, where all
images have been taken with a smartphone camera inside grocery stores to simulate
a realistic shopping scenario. In addition to the natural images, we also looked upon
alternative types of grocery item data that could facilitate the classification task.
Grocery store chains commonly maintain websites where they store information about
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the grocery items they sell and are currently available in the store for online grocery
shopping. For every item, there is usually an iconic image of the item with white
background, a text description about the item, and also information about nutrition
values, origin country, etc. We downloaded such information from an online grocery
shopping website to complement the natural images in the dataset.

To utilize the available information from the dataset for grocery item classifica-
tion, we use a multi-view generative model Variational Canonical Correlation Anal-
ysis (VCCA) [7] that learns a shared representation of the natural images and the
downloaded information. A view can be defined as any signal or data measured by
some appropriate sensor and combining information from multiple views has previ-
ously been shown to be helpful for various image classification tasks [8–15]. However,
naively adding more additional information may not lead to improved results and
even harm the performance of the model [16,17]. We, therefore, perform an ablation
study over the available views in the dataset with VCCA to gain insights into how
each view can affect the classification performance. Moreover, VCCA allows sepa-
rating the latent space into shared and private components, where the private latent
spaces should hold information about a single view. This might prove useful for
reducing view-specific noise in the shared latent space, which can ease the learning
process of the representations we want to use for classification. We investigate the
effects each view has on the learned representations of VCCA by measuring classi-
fication performances as well as visualizing the latent space for the different model
settings. The contributions of this paper are the following:

� We present a novel dataset with natural images of grocery items as well as iconic
images and text descriptions for every item class (see Section 2.1) [6]. The natural
images are taken in grocery stores in different lighting conditions and backgrounds
that can be challenging settings for a computer vision-based assistive device. The
additional iconic images and text descriptions make the dataset suitable for multi-
view learning by combining the natural images with the extra information to obtain
better classification performance.

� We investigate how to use information from different views for the task of grocery
item classification with the deep generative model VCCA (see Section 4.2). This
model combines information from multiple views into a low-dimensional latent rep-
resentation that can be used for classification. We also select a variant of VCCA
denoted VCCA-private that separates shared and private information about each
view through factorization of the latent representation (see subsection Extracting
Private Information of Views with VCCA-private in Experimental Procedures).
Furthermore, we use a standard multi-view autoencoder model called Split Au-
toencoder (SplitAE) [17, 18] for benchmarking against VCCA and VCCA-private
on classification.

� We conduct experiments with SplitAE, VCCA, and VCCA-private on the task
of grocery item classification with our dataset (Results). We perform a thorough
ablation study over all views in the dataset to demonstrate how each view con-
tributes to enhancing the classification performance and conclude that utilizing the
web-scraped views yields better classification results than only using the natural
images (see subsection Classification Results in Results). To gain further insights
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into the results, we visualize the learned latent representations of the VCCA mod-
els and discuss how the iconic images and textual descriptions impose different
structures on the latent space that are beneficial for classification (see subsection
Investigation of the Learned Representations in Results).

This work is an extended version of Klasson et al. [6], where we first presented this
dataset. In this paper, we have added a validation set of natural images from two
stores that were not present in the training and test set splits from [6] to avoid over-
fitting effects. We also demonstrate how the text descriptions can be utilized alone
and along with the iconic images in a multi-view setting, while [6] only experimented
with the combination of natural and iconic images to build better representations
of grocery items. Finally, we decode iconic images from unseen natural images as
an alternative to evaluate the usefulness of the latent representations (see subsection
Decoding Iconic Images from Unseen Natural Images in Results). As we only evalu-
ated the decoded iconic images qualitatively in Klasson et al. [6], we have extended
the assessment by comparing the quality of the decoded images from different VCCA
models with multiple image similarity metrics.

Next, we discuss image datasets, food datasets, and multi-view models related to
our work:

Image Datasets Many image datasets used in computer vision have been collected
by downloading images from the web [19–30]. Some datasets [19, 22, 24, 26, 28] use
search words with the object category in isolation, which typically returns high-
quality images where the searched object is large and centered. To collect images from
more real-world scenarios, searching for combinations of object categories usually
returns images of two searched categories but also numerous other categories [25,
30]. The simplest annotation of these images is to provide a class label for the
present objects. Occasionally, the dataset can use a hierarchical labeling structure
and provide a fine- and coarse-grained label to objects where it is applicable. The
annotators can also be asked to increase the possible level of supervision for the
objects by, for instance, providing bounding boxes, segmentation masks, keypoints,
text captions that describe the scene, and reference images of the objects [21,23,25,
26, 28, 30]. Our dataset includes reference (iconic) images of the objects that were
web-scraped from a grocery store website. We also downloaded text descriptions that
describe general attributes of the grocery items, such as flavor and texture, rather
than the whole visual scene. The grocery items have also been labeled hierarchically
in a fine- and coarse-grained manner if there exist multiple variants of specific items.
For example, fine-grained classes of apples such as Golden Delicious or Royal Gala
belongs to the coarse-grained class apple.

Food Datasets Recognizing grocery items in their natural environments, such
as grocery stores, shelves, and kitchens, have been addressed in plenty of previous
works [6, 31–41]. The addressed tasks range from hierarchical classification, object
detection, segmentation, and 3D model generation. Most of these works collect a
dataset that resembles shopping or cooking scenarios, where the datasets vary in the
degree of labeling, different camera views, and the data domain difference between
the training and test set. The training sets in GroZi-120 [36], Grocery Products [32],
and CAPG-GP [31] datasets were obtained by web-scraping product images of single
instances on grocery web stores, while the test sets were collected in grocery stores
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where there can be single and multiple instances of the same item and other different
items. The RPC [39] and TGFS [41] datasets are used for object detection and clas-
sification of grocery products, where RPC is targeted for automatic checkout systems
and TGFS is for the task of recognizing items purchased from self-service vending
machines. The BigBIRD [37] dataset and datasets from [33, 35] contain images of
grocery items from multiple camera views, segmentation masks, and depth maps for
3D reconstruction of various items. The Freiburg Groceries [34] dataset contains
images taken with smartphone cameras of items inside grocery stores, while its test
set consists of smartphone photos in home environments with single or multiple in-
stances from different kinds of items. The dataset presented in [38] also contains
images taken with smartphone cameras inside grocery stores to develop a mobile ap-
plication for recognizing raw food items and provide details about the item, such as
nutrition values and recommendations of similar items. Other works that collected
datasets of raw food items, such as fruits and vegetables, focused on the standard
image classification task [42, 43] and on detecting fruits in orchards for robotic har-
vesting [44, 45]. Our dataset – the Grocery Store dataset – shares many similarities
with the mentioned works above, for instance, that all images of groceries are taken
in their natural environment, the hierarchical labeling of the classes, and the iconic
product images for each item in the dataset. Additionally, we have provided a text
description for each item that was web-scraped along with the iconic image. As most
grocery item datasets only include packaged products, we have also collected images
of different fruit and vegetable classes along with packages in our dataset.

Other examples of food datasets are those with images of food dishes, where [46]
provides a summary of existing benchmark food datasets. The contents of these
datasets range from images of food dishes [47–50], cooking videos [51], recipes [52–
54], and also restaurant-oriented information [55, 56]. One major difference between
recognizing groceries and food dishes is the appearance of the object categories in
the images. For instance, a fruit or vegetable is usually intact and present in the
image, while ingredients that are significant for recognizing a food dish may not be
visible at all depending on the recipe. However, recognizing raw food items and
dishes share similarities since they can appear with many different visual features
in the images compared to packaged groceries, e.g., carton boxes, cans, and bottles,
where the object classes have identical shape and texture. Another key difference
is the natural environments and scenes where the images of grocery items and food
dishes have been taken. Food dish images usually show the food on a plate placed on
a table and, occasionally, with cutlery and a glass next to the plate. Images taken in
grocery stores can cover many instances of the same item stacked close to each other
in shelves, baskets, and refrigerators, while there can be multiple different kinds
of items next to each other in a kitchen environment. To summarize, recognizing
grocery items and food dishes are both challenging tasks because examples from the
same category can look very different and also appear in various realistic settings in
images.

Multi-View Learning Models There exist lots of multi-view learning approaches
for data fusion of multiple features [7,9,10,17,57–70]. A common approach is to ob-
tain a shared latent space for all views with the assumption that each view has
been generated from this shared space [68]. A popular example of this is approach
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is Canonical Correlation Analysis (CCA) [71], which aims to project two sets of
variables (views) into a lower-dimensional space so that the correlation between the
projections is maximized. Similar methods propose maximizing other alignment ob-
jectives for embedding the views, such as ranking losses [9, 10, 59, 67]. There exist
nonlinear extensions of CCA, e.g., Kernel CCA [72] and Deep CCA [73], that opti-
mize their nonlinear feature mappings based on the CCA objective. Deep Canonically
Correlated Autoencoders (DCCAE) [18] is a Deep CCA model with an autoencod-
ing part, which aims to maximize the canonical correlation between the extracted
features as well as reconstructing the input data. Removing the CCA objective re-
duces DCCAE to a standard multi-view autoencoder, e.g., Bimodal Autoencoders
and Split Autoencoders (SplitAEs) [17, 18], that only aim to learn a representation
that best reconstructs the input data. SplitAEs aim to reconstruct two views from a
representation encoded from one of the views. This approach was empirically shown
to work better than Bimodal Autoencoders in [17] in situations where only a single
view is present at both training and test time.

Variational CCA (VCCA) [7] can be seen as an extension of CCA to deep genera-
tive models, but can also be described as a probabilistic version of SplitAEs. VCCA
uses the amortized inference procedure from Variational Autoencoders (VAEs) [74,75]
to learn the shared latent space by maximizing a lower bound on the data log-
likelihood of the views. Succeeding works have proposed new learning objectives and
inference methods for enabling conditional generation of views, e.g., generating an
image conditioned on some text and vice versa [58, 62, 63, 65, 66]. These approaches
rely on fusing the views into the shared latent space as the inference procedure,
which often requires tailored training and testing paradigms when views are missing.
However, adding information from multiple views may not lead to improved results
and can even make the model perform worse on the targeted task [16, 17]. This is
especially the case when views have noisy observations, which complicates learning
a shared latent space that combines the commonalities between the views. To avoid
disturbing the shared latent space with noise from single views, some works design
models which extend the shared latent space with private latent spaces for each view
that should contain the view-specific variations to make learning the shared variations
easier [7, 61, 64, 69, 76]. VCCA can be extended to extract shared and private infor-
mation between different views through factorization of the latent space into shared
and private parts. In this paper, we investigate if the classification performance
of grocery items in natural images can be improved by extracting the view-specific
variations in the additional views (iconic images and product descriptions) from the
shared latent space with this variant of VCCA called VCCA-private. We will ex-
periment with treating each data point as pairs of natural images and either iconic
images or text descriptions as well as triplets of natural images, iconic images, and
text descriptions. A difference between how we apply VCCA to our dataset com-
pared to the works above is that the iconic image and text description are the same
for every natural image of a specific class.

2 Results

In this section, we begin by providing the details about the collected dataset, which
we have named the Grocery Store dataset. Furthermore, we illustrate the utility of
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Figure 3: Illustration of the hierarchical class structure of the dataset. First, the classes are divided
by their grocery item type, i.e., Fruits, Vegetables, and Packages, followed by a separating the items
into coarse-grained classes, e.g., Apple, Carrot, and Milk, and then into fine-grained classes. There
are 81 fine-grained classes in total and 46 coarse-grained classes. The figure also shows the iconic
image and text description of the items next to the class label.

the additional information in the Grocery Store dataset to classify grocery items in
the experiments. We compare SplitAE, VCCA, and VCCA-private with different
combinations of views against two standard image classifiers. Additionally, we ex-
periment with a vanilla autoencoder (denoted as AE) and a VAE that post-processes
the natural image features to train a linear classifier cheaper and compare the per-
formance against the multi-view models. We measure the classification performance
on the test set for every model and also compare the classification accuracies when
the number of words in the text description varies for the models concerned (see
subsection Classification Results in Results). To gain insights on how the additional
views affect the learned representations, we visualize the latent spaces of VCCA and
VCCA-private with PCA and discuss how different views changes the structure of the
latent space (see subsection Investigation of the Learned Representations in Results).
Finally, we show how iconic images can be used for enhancing the interpretability
of the classification (see subsection Decoding Iconic Images from Unseen Natural
Images in Results), which was also illustrated by Klasson et al. [6].

2.1 The Grocery Store Dataset

In Klasson et al. [6], we collected images from fruit, vegetable, and refrigerated
sections with dairy and juice products in 20 different grocery stores. The dataset
consists of 5421 images from 81 different classes. For each class, we have downloaded
an iconic image of the item, a text description, and information including origin
country, appreciated weight and nutrient values of the item from a grocery store
website. Some examples of natural images and downloaded iconic images can be
seen in Figure 1 and 2 respectively. Furthermore, Table 4 displays a selection of
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text descriptions with their corresponding iconic image. The text description length
varies between 6 and 91 words with an average of 36 words. We also structure
that classes hierarchically with three levels as illustrated in Figure 3. The first
level divides the items into three categories; Fruits, Vegetables, and Packages. The
next level consists of 46 coarse-grained classes which divides the items into groups
contain groups of items types, e.g., Apple, Carrot, Milk. The bottom level consists
of the 81 fine-grained classes, where the items are completely separated. Note that
a coarse-grained class without any fine-grained classes in the dataset, e.g., Banana
and Carrot, is considered as a fine-grained class in the classification experiments (see
subsection Classification Results in Results), where we report both fine-grained and
coarse-grained classification performance of the models.

We aimed to collect the natural images under similar conditions as if they would
be taken with an assistive mobile application. All images have been taken with a
16-megapixel Android smartphone camera from different distances and angles. Oc-
casionally, the images include other items in the background or even items that have
been misplaced in incorrect shelves along with the targeted item. The lighting con-
ditions in the images can also vary depending on where the items are located in the
store. Sometimes the images are taken while the photographer is holding the item
in the hand. This is often the case for refrigerated products since these containers
are usually stacked compactly in the refrigerators. For these images, we have con-
sciously varied the position of the object, such that the item is not always centered
in the image or present in its entirety. We split the natural images into a training
set and test set based on the application need. Since the images have been taken
in several different stores at specific days and time stamps, parts of the data will
have similar lighting conditions and backgrounds for each photo occasion. To re-
move any such biasing correlations, all images of a certain class taken at a certain
store are assigned to either the training set, validation set, or test set. In the first
version of the dataset [6], we balanced the class sizes to a large extent as possible in
both the training and test set, which resulted in a training and test set containing
2640 and 2485 images respectively. In this paper, we have extended the dataset with
a validation set containing 296 images taken with the same smartphone camera as
before. The validation set was collected from two different grocery stores than the
ones in the first version to avoid the biasing correlations described above. Initially,
we experimented with grabbing a validation set from the current training set and
noticed that the trained classifiers performed exceptionally well on the validation
set. However, the classifiers generalized poorly to images from the test set that were
taken in other stores and therefore decided to collect the validation set in two unseen
stores to avoid the biases from the training set. We show histograms representing
the class distributions for the training, validation, and test splits in Figure 11.

The scenario that we wanted to depict with the dataset was using a mobile de-
vice to classify natural images visually impaired people with grocery shopping. The
additional information such as the iconic images, text descriptions, and hierarchical
structure of the class labels can be used to enhance the performance of the computer
vision system. Since every class label is associated with a text description, the de-
scription itself can be part of the output for visually impaired persons as they may
not be able to read what is printed on a carton box or a label tag on a fruit bin in
the store.
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2.2 Models

In this section, we briefly describe the models that we apply to grocery classification.
The notation of the views that are available in the Grocery Store dataset are the
following:

� x: Natural image encoded into image feature space with an off-the-shelf con-
volutional neural network.

� i: Iconic image of the object class in the natural image.
� w: Text description of the object class in the natural image.
� y: Class label of the natural image.

We mainly focus on analyzing VCCA [7] for utilizing different combinations of the
views and investigate how each view contributes to the classification performance
of grocery items. Our primary baseline model is the SplitAE which extracts shared
representations by reconstructing all views, while VCCA aims to maximize a lower
bound on the data log-likelihood for all views. We also study a variant of VCCA
called VCCA-private [7], which is used for extracting private information about each
view in addition to shared information across all views by factorizing the latent space.

We compare the multi-view models against single-view methods only using the
natural images for classification. As our first single-view baseline, we customize the
output layer of DenseNet169 [77] to the Grocery Store dataset and train it from
scratch to classify the natural images, which we refer to as DenseNet-scratch in the
experiments. The second baseline called Softmax is a Softmax classifier trained on
the off-the-shelf features from DenseNet169 pre-trained on the ImageNet dataset [19],
where we extract 1664-dimensional from the average pooling layer before the clas-
sification layer in the architecture. We also experiment with AEs and VAEs for
post-processing the off-the-shelf features and use a linear classifier to evaluate the
models on classification. See Section 4.2 for a thorough description of the single- and
multi-view autoencoders used in this paper. We name the single- and multi-view
autoencoders using subscripts to denote the views utilized for learning the shared
latent representations. For example, VCCAxi utilizes natural image features x and
iconic images i, while VCCAxiwy uses natural image features x and iconic images i,
text descriptions w, and class labels y.

2.3 Classification Results

We evaluated the classification accuracy on the test set for each model. We also
calculate the accuracy for the coarse-grained classes with the following method: Let

the input x(i) have a fine-grained class y
(i)
fg and a coarse-grained class y

(i)
cg . Each

fine-grained class can be mapped to its corresponding coarse-grained class using

Pa(y
(i)
fg ) = y

(i)
cg , where Pa(·) stands for ”parent”. Then we compute the coarse-

grained accuracy using

coarse accuracy =
1

N

N∑
i=1

[
Pa(ŷ

(i)
fg ) = y(i)

cg

]
,

ŷ
(i)
fg = arg max

y
p(y|x(i)),

(1)



102
PAPER B. VARIATIONAL MULTI-VIEW LEARNING FOR GROCERY

CLASSIFICATION

Table 1: Classification accuracies on the test set for all models in percentage (%) along for each
model. The subscript letters in the model names indicate the data views used in the model. The
column Accuracy corresponds to the fine-grained classification accuracy. The column Coarse Ac-
curacy corresponds to the classifying a class within the correct parent class. Results are averaged
using 10 different random seeds and we report both means and standard deviations. Abbreviations:
AE, Autoencoder; VAE, Variational Autoencoder; SplitAE, Split Autoencoder; VCCA, Variational
Canonical Correlation Analysis.

Model Accuracy (%) Coarse Accuracy (%)
DenseNet-scratch 67.33± 1.35 75.67± 1.15
Softmax 71.67± 0.28 83.34± 0.32
AEx+Softmax 70.69± 0.82 82.42± 0.58
VAEx+Softmax 69.20± 0.46 81.24± 0.63
SplitAExy 70.34± 0.56 82.11± 0.38
VCCAxy 70.72± 0.56 82.12± 0.61
SplitAExi+Softmax 77.68± 0.69 87.09± 0.53
VCCAxi+Softmax 77.02± 0.51 86.46± 0.42
VCCA-privatexi+Softmax 73.04± 0.56 84.16± 0.51
SplitAExiy 77.43± 0.80 87.14± 0.57
VCCAxiy 77.22± 0.55 86.54± 0.51
VCCA-privatexiy 74.04± 0.83 84.59± 0.83
SplitAExw+Softmax 76.27± 0.66 86.45± 0.56
VCCAxw+Softmax 75.37± 0.46 86.00± 0.32
VCCA-privatexw+Softmax 75.11± 0.81 85.91± 0.55
SplitAExwy 75.78± 0.84 86.13± 0.63
VCCAxwy 74.72± 0.85 85.59± 0.78
VCCA-privatexwy 74.92± 0.74 85.59± 0.67
SplitAExiw+Softmax 77.79± 0.48 87.12± 0.62
VCCAxiw+Softmax 77.51± 0.51 86.69± 0.41
SplitAExiwy 78.18± 0.53 87.26± 0.46
VCCAxiwy 77.78± 0.45 86.88± 0.47

where
[
Pa(ŷ

(i)
fg ) = y

(i)
cg

]
= 1 when the condition is true and ŷ

(i)
fg is the predicted fine-

grained class from the selected classifier. The classification results for all models are
shown in Table 1. We group the results in the table according to the utilized views
and classifier. We see that Softmax trained on off-the-shelf features outperforms
DenseNet-scratch by 4%. This result is common when applying deep learning to
small image datasets, where pre-trained deep networks are transferred to a new
dataset usually performs well compared to training neural networks on the dataset
from scratch. Therefore, we present results using the off-the-shelf features for all
other models.

The SplitAE and VCCA models surpass the Softmax baseline in classification per-
formance when incorporating either the iconic image or text description view. We
believe that the models using the iconic images achieve better classification accuracy
over models using the text description because the iconic images contain visual fea-
tures, e.g., color and shape of items, that are more useful for the image classification
task. The text descriptions include more often information about the flavor, origin,
and cooking details rather than describing visual features of the item, which can be
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(a) SplitAExiwy (b) VCCAxiwy

(c) SplitAExiwy (d) VCCAxiwy

Figure 4: Visualizations of the latent representations of the test set from SplitAExiwy and
VCCAxiwy . We plot the corresponding iconic image to each latent representation in Figure 4a
and 4b. In Figure 4c and 4d, we plot the bell pepper representations according to the color of the
class, while the blue points correspond to the other grocery items. Abbreviations: SplitAE, Split
Autoencoder; VCCA, Variational Canonical Correlation Analysis.

less informative when classifying items from images. In most cases, the corresponding
SplitAE and VCCA models perform on par for classification performance. However,
VCCA-private with iconic images results in a significant drop in accuracy compared
to its counterpart. We observed that the private latent variable simply models noise
since there is only a single iconic image (and text description) for each class. We
provide a further explanation of this phenomenon in Section 2.4.

We observe that VCCA models compete with their corresponding SplitAE models
in the classification task. The main difference between these models is the Kullback-
Leibler (KL) divergence [78] term in the ELBO that encourages a smooth latent
space for VCCA (see Section 4). In contrast, SplitAE learns a latent space that best
reconstructs the input data, which can result in parts of the space that does not
represent the observed data. We showcase these differences by plotting the latent
representations of SplitAExiwy and VCCAxiwy using PCA in Figure 4. In Figure 4a
and 4b, we have plotted the corresponding iconic image for the latent representations.
We observe that VCCAxiwy tries to establish a smooth latent space by pushing
visually similar items closer to each other, but at the same time prevent spreading
out the representations too far from the origin. Figure 4c and 4d shows the positions
of the bell peppers items in the latent spaces, where the color of the point corresponds
to the specific bell pepper class. In Figure 4c, we observe that SplitAExiwy has spread
out the bell peppers across the space, while VCCAxiwy establishes shorter distances
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Figure 5: Test accuracy over the text description length T for all SplitAE, VCCA, and VCCA-
private models using the text description. We show the accuracy for the models trained with
T = 6, 8, 16, 24, 32, 36, 40, 50, 75, and 91 words. The results have been averaged for 10 different seeds
and the error bars show the standard deviations for every setting of T . Abbreviations: SplitAE,
Split Autoencoder; VCCA, Variational Canonical Correlation Analysis.

between them in Figure 4d due to the regularization.
We evaluated the classification performance achieved by each SplitAE, VCCA,

and VCCA-private model using the text descriptions with different description lengths
T . Figure 5 shows the fine-grained classification accuracies for the concerned models.
For models using only the text descriptions, the classification accuracies increase as
T increases in most cases. Setting T ≥ 32 results in good classification performance,
potentially since the models have learned to separate the grocery items based on
that the text descriptions have become more dissimilar and unique. The classifi-
cation accuracies are mostly stable as T varies for the models with the additional
iconic images. Since including iconic images significantly increases the classification
performance over models only using text descriptions, we conclude that the iconic
images are more helpful when we want to classify the grocery items from natural
images.

2.4 Investigation of the Learned Representations

To gain insights about the effects that each view has on the classification performance,
we visualize the latent space by plotting the latent representations using PCA. Uti-
lizing the additional views showed to have similar effects on the structure of the
latent spaces from SplitAE and VCCA. Since our main interest lies in representation
learning with variational methods, we focus on studying the latent representations
of VCCA and VCCA-private. Firstly, we use PCA to visualize the latent represen-
tations in 2D and plot the corresponding iconic images of the representations (see
Figure 6). Secondly, to illustrate the effects that the iconic images and text descrip-
tions have on the learned latent space, we focus on two cases of grocery items where
one of the views helps to separate two different types of classes and the other one
does not (see Figure 7 and 8). Finally, we look into the shared and private latent
spaces learned by VCCA-privatexw and observe that variations in image backgrounds
and structures of text sentences have been separated from the shared representations
into the private ones.
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(a) DenseNet169 (b) VAEx (c) VCCAxy

(d) VCCAxi (e) VCCAxw (f) VCCAxiw

(g) VCCAxiy (h) VCCAxwy (i) VCCAxiwy

Figure 6: Visualizations of the latent representations from the test set, where we plot the iconic
image of the corresponding object classes. We also plot the PCA projection of the natural image
features from the off-the-shelf DenseNet169 in Figure 6a. All models have been initialized with the
same random seed before training.

In Figure 6, we show the latent representations for the VCCA models that were
used in Table 1 (see subsection Classification Results in Results). We also plot the
PCA projections of the natural image features from the off-the-shelf DenseNet169
in Figure 6a as a baseline. Figure 6b and 6c shows the latent space learned by n
VAEx and VCCAxy, which are similar to the DenseNet169 feature space since these
models are performing compression of the natural image features into the learned
latent space. We observe that these models have divided packages and raw food
items into two separate clusters. However, the fruits and vegetables are scattered
across their cluster and the packages have been grouped close to each other despite
having different colors, e.g., black and white, on the cartons.

The structure of the latent spaces becomes distinctly different for the VCCA
models that use either iconic images or text descriptions as an additional view and
we can observe the different structures that the views bring to the learned latent
space. In Figure 6d and 6g, we see that visually similar objects, in terms of color
and shape, have moved closer together by utilizing iconic images in VCCAxi and
VCCAxiy. When using text descriptions in VCCAxw and VCCAxwy, we also observe
in the fruit and vegetable cluster that the items are more grouped based on their
color in Figure 6e and 6h. Figure 6f and 6i shows the latent spaces in VCCAxiw
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(a) VCCAxi (b) VCCAxw (c) VCCAxiw

(d) VCCAxiy (e) VCCAxwy (f) VCCAxiwy

Figure 7: Visualizations of the latent representations µz of the red and green apples in the Grocery
Store dataset. The red points correspond to the red apple classes, while the green points correspond
to the green apple. The blue points correspond to the other grocery items.

and VCCAxiwy respectively. These latent spaces are similar to the ones learned by
VCCAxi and VCCAxiy in the sense that these latent spaces also group items based
on their color and shape. We believe that this structure imposed by the iconic images
could be softened by reducing the scaling weight λi, which potentially could reduce
the classification accuracy as a consequence. The difference between the latent spaces
is not evident comparing the models using the class label.

Red and Green Apples To showcase how the iconic images help to learn good
representations, we consider all of the apple classes in the dataset, namely the red
apples Pink Lady, Red Delicious and Royal Gala, and also the green apples Golden
Delicious and Granny Smith. In Figure 7, we group the red apple classes and visualize
their latent representations by red points. The green apples are grouped similarly and
we visualize their latent representations with green points. Latent representations
of all other grocery items are visualized as blue points. The models using iconic
images as one view in Figure 7a, 7d, 7c, and 7f have managed to separate the red
and green apples based on their color differences. The models using text description
have instead moved the apples closer together in one part of the latent space, possibly
because of their similarities mentioned in the description.

Juice and Yoghurt Packages To illustrate how the text descriptions can establish
more useful latent representations, we consider a selection of juice and yoghurt classes.
These packaged items have similar shapes and colors, which makes it difficult for a
classifier to distinguish their content differences using only visual input. In Figure
8, we visualize the latent representations of the juice and yoghurt packages using
yellow and green points respectively. We observe that only VCCAxw and VCCAxwy

manages to separate the packages in Figure 8b and 8e due to their different text
descriptions. Since the iconic images of the packages are visually similar, adding this
information is insufficient for separating these packages in the latent space. This
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(a) VCCAxi (b) VCCAxw (c) VCCAxiw

(d) VCCAxiy (e) VCCAxwy (f) VCCAxiwy

Figure 8: Visualizations of the latent representations µz of a selection of juice packages and yoghurt
packages in the Grocery Store dataset. The yellow and green points correspond to the juice and
yoghurt packages respectively. The blue points correspond to the other grocery items.

indicates that we gain different benefits from the iconic images and text descriptions
when it comes to classifying grocery items.

Latent Spaces of VCCA-private We show the shared and private latent spaces
of VCCA-privatexw in Figure 9b-d, as well as the single latent space of VCCAxw for
comparison in Figure 9a. Comparing with the latent space of VCCAxw, the shared
latent space of VCCA-privatexw in Figure 9b, has structured the raw food items
based on their class, color, and shape better than standard VCCAxw. In Figure 9c,
we plot the natural images corresponding to the latent representation for the private
latent variable ux. We zoom in on some natural images and found that the images
are structured based on their similarities in background and camera view. On the
left and bottom sides of the cluster, we found images of grocery items closely packed
together in bins. Single items that are held in the hand of the photographer are
placed on the right side, whereas images of items and the store floor are placed on
the top and middle of the latent space. The model has therefore managed to separate
the variations within the natural image view into the private latent variable ux from
the shared latent variable z, which probably is the main reason why similar raw
food items are closer to each other in Figure 9b than in Figure 9a. We also plot
the corresponding iconic image on the position of the text description representation
for the private latent variable uw in Figure 9d. Note that every text description is
projected at the same location in the latent space since the text descriptions are the
same for every class item. We highlighted some specific words in the descriptions
and observed that descriptions with the same words are usually close to each other.
Visually dissimilar items can be grouped close to each other in this latent space,
which indicates that the private latent variable uw contains information about the
structure of the text sentences, i.e., word occurrences and how they are ordered in
the text description. In Figure 14, we show the shared and private latent spaces of
VCCA-privatexi and provide a conclusion to the results in Section II.3.
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(a) µz from VCCAxw (b) µz from VCCA-privatexw

(c) µx from VCCA-privatexw

Fresh skimmed milk ... from 
Arlagårdar … delicious 
full-bodied milk flavor ...  for 
breakfast cereals ... 

drink for the meal...

Fresh skimmed milk …  from 
organic Arlagårdar … 

delicious full flavor ... for 
breakfast cereals … 

drink for the meal...

Fresh standard milk …  
from Arlagårdar. The 

taste is round and full of 
clear flavors of cream. 
This makes it extra good 

for coffee, tea... 

The orange pepper is 

sweeter than the green 
... vitamins … good to eat 

raw in salads … also 

good to fry, stew... 

The forest mushroom …  a brown 
mushroom with a fuller flavor than 

the white mushrooms ... eaten 
raw in for example salads ... 

good to boil ... fry.

The red grapefruit has a 

red pulp and a slightly 

pink colored peel. The 

taste is … bitter …  
fresh and sour….

The cantaloupe melon … a 
greenish yellow mesh 

patterned shell. The pulp 

is orange colored with 
juicy and sweet 

taste.

The Kaiser Pear is ..., flaming 
yellow-brown ... yellowish 
white pulp is crispy, 

juicy and sweet...The yellow pepper is 

much sweeter than 

the green ... 

vitamins ... good to eat 

raw in salads ... also 

good to fry, stew...

Solid potatoes. A good 

allround potato that fits 
well most of the time.

Sweet potatoes are ... slightly larger 

than regular potatoes. The peel is 

light brown or red ...yellow 

orange pulp... 

Red beets has an earthy and 

sweet taste ...

… variety of colors of peppers … are 

green, yellow ... paprika always 
starts as green … becomes more 

ripe...

Round tomatoes with vines 
in the package. Rinse and have 

in the salad ...

Round and fine 

tomatoes … in the salad...
Garlic has unique flavor and smell, 

and is a good flavoring in 
pasta dishes, pots...

Ripe plums have soft and 

juicy pulp with sweet 
taste...

Pink Lady reminds of Royal Gala, 

though it is an even sweeter 

and crispier apple.

Sour cream made from fresh 

cream from Swedish 

Arlagårdar ... fresh taste with a 

slightly creamy texture.

Tropicana Golden Grape … juice with 

pulp pressed on grapefruit ... 

Mildly pasteurized.

Tropicana Smooth Style …  juice 

without pulp pressed on 

sun-dried oranges .... 

Mildly pasteurized.

Galia melon is a small round sugar 

melon ... pulp is firm and juicy …  

a sweet, rich flavor.

Satsumas is a sweet and 

small type of citrus fruit...

Red Delicious is a dark red 

apple with relatively soft pulp 

and sweet taste.

(d) µw from VCCA-privatexw

Figure 9: Visualizations of the latent representations µz of a selection of juice packages and yoghurt
packages in the Grocery Store dataset. The yellow and green points correspond to the juice and
yoghurt packages respectively. The blue points correspond to the other grocery items.
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Table 2: Results on image quality of decoded iconic images for the Variational Canonical Correlation
Analysis (VCCA) models using the iconic images. The subscript letters in the model names indicate
the data views used in the model. ↑ denotes higher is better, ↓ lower is better. Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity (SSIM), and Kullback-Leibler (KL) divergence are measured
by comparing the true iconic image against the decoded one. Accuracy shows the classification
performance for each model and has been taken from Table 1. We report means and standard
deviations averaged over 10 random seeds for all metrics.

Model PSNR ↑ SSIM ↑ KL ↓ Accuracy (%) ↑
VCCAxi 20.13± 0.05 0.72± 0.00 4.43± 0.21 77.02± 0.51

VCCAxiy 20.12± 0.09 0.73± 0.00 4.35± 0.22 77.22± 0.55

VCCAxiw 20.11± 0.09 0.73± 0.00 4.29± 0.24 77.51± 0.51

VCCAxiwy 20.16± 0.08 0.73± 0.00 4.32± 0.22 77.78± 0.45

2.5 Decoding Iconic Images from Unseen Natural Images

In this section, we show how the iconic image decoder can decode plausible iconic
images of grocery items from unseen natural images in the test set. We apply the
same approach as in [6], where we encode unseen natural images and then decode
the retrieved latent representation back into an iconic image. We also report several
image similarity metrics to investigate if the decoded image quality is correlated with
classification performance. We report peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) [79], and the KL divergence by comparing the decoded iconic im-
ages to the true ones. For computing the KL divergence, we model the decoded and
true iconic image using two Gaussian Mixture Model (GMM) [80, 81]. The images
are then represented as density functions, such that we can measure the similarity
between the two densities with the KL divergence and use it as an image similarity
metric. Since the KL divergence between two GMMs is not analytically tractable, we
apply Monte Carlo simulation using n i.i.d. samples drawn from the decoded image
density for approximating the KL divergence [82]. Due to the simple structure of the
iconic images, we fit the GMMs with K = 2 Gaussian components using the RGB
color values and draw n = 100 Monte Carlo samples to estimate the KL divergence
in all experiments. Table 2 shows the image similarity metrics between the VCCA
models using the iconic images. We also show the model classification accuracy for
each model, which have been taken from Table 1. The models perform on par on the
image similarity metrics, which indicates that the quality of the decoded images is
intact if the model extends to utilizing text descriptions and class labels in addition
to the iconic images.

In Table 3, we display five different natural images from the test set, their true
corresponding iconic image, the decoded iconic image from VCCAxiwy. We also
show the true and predicted labels from the class label decoder (see Pred. Label).
Additionally, we report the image similarity metrics PSNR, SSIM, and KL divergence
between the decoded and true iconic images. For the Mango and Royal Gala images,
we observe that the decoded images are visually plausible, in terms of recognized
item, color, and shape, in both cases, which coheres with the high PSNR and SSIM
values and low KL values. The third row shows a shelf with orange and green bell
peppers where the decoded image has indeed been decoded into a mix of a green and
orange bell pepper. In the two succeeding rows, we display failure cases where the
model confuses the true class label with other grocery items. We observe that each
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Table 3: Examples of decoded iconic images from VCCAxiwy with their corresponding natural
image and true iconic image as well as predicted labels and image similarity metrics. The column
Classification shows the true label for the natural image (True Label) and the label predicted by
the model (Pred. Label). The column Metrics shows PSNR, SSIM, and KL divergence between
the decoded and true iconic images.

Natural Image Iconic Image Decoded Image Classification Metrics

True Label: Mango

Pred. Label: Mango

PSNR: 25.31

SSIM: 0.88

KL: 0.36

True Label: Royal Gala

Pred. Label: Royal Gala

PSNR: 25.72

SSIM: 0.92

KL: 1.73

True Label: Orange Bell Pepper

Pred. Label: Orange Bell Pepper

PSNR: 16.64

SSIM: 0.61

KL: 3.74

True Label: Anjou

Pred. Label: Granny Smith

PSNR: 14.64

SSIM: 0.51

KL: 28.01

True Label: Arla Eco. Sourcream

Pred. Label: Arla Std. Milk

PSNR: 13.16

SSIM: 0.45

KL: 1.33

metric drops according to the mismatch between decoded and true iconic images.
The fourth row shows a basket of Anjou pears, where the model confuses the pear
with a Granny Smith apple which can be seen in the decoded image. In the fifth row,
there are red milk packages stacked behind a handheld sourcream package, where the
decoded image becomes a blurry mix of the milk and sourcream package. Although
the predicted class is incorrect, we observe that the prediction is reasonable based
on the decoded iconic image.

3 Discussion

In this section, we summarize the experimental results and discuss our findings.

Classification Results In the first experiments (see Section 2.3), we showed that
utilizing all four views with SplitAExiwy and VCCAxiwy resulted in the best classifi-
cation performance on the test set. This indicates that these models take advantage
of each view to learn representations that enhance their generalization ability com-
pared to the single-view models. Moreover, using either the iconic images, the text
descriptions or both views yields better representations for classification compared to
using the natural image features alone. Note that it was necessary to properly set the
scaling weights λ on the reconstruction losses of the additional views to achieve good
classification performance (see Table 5). Whenever the weight values are increased,
the model tries to structure the representations according to variations between the
items in the upweighted view rather than structuring the items based on visual fea-
tures in the natural images, e.g., shape, color, and pose of items, image backgrounds,
etc. Thus, the latent representations are structured based on semantic information
that describes the item itself, which is important for constructing robust representa-
tions that generalize well in new environments. Furthermore, the class label decoders
performed on par with the separate Softmax classifiers in most cases. The upside
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with training a separate classifier is that we only would have re-train the classifier if
we receive a new class in the dataset, while we would have to train the whole model
from scratch when the model uses a class label decoder. Note that the encoder for
any of the multi-view models can be used for extracting latent representations for
new tasks, whether the model utilizes the label or not, since the encoder only uses
natural images as input.

Iconic Images vs. Text Descriptions In Table 1, the iconic images yielded
higher classification accuracies compared to using the text descriptions. This was
also evident in Figure 5 where the classification performance remains more or less
the same regardless of the text description length T when the models utilize iconic
images. We believe that the main reasons for the advantages with iconic images lie in
the clear visual features of the items in these images, e.g., their color and shape, which
carry lots of information that is important for image classification tasks. However,
we also observed that iconic images and text descriptions can yield different benefits
for constructing good representations. In Figure 6, we see that iconic images and
text descriptions make the model construct different latent representations of the
grocery items. Iconic images structures the representations with respect to color and
shape of the items (see Figure 7), while the descriptions groups items based on their
ingredients and flavor (see Figure 8). Therefore, the latent representations benefit
differently from utilizing the additional views and a combination of all of them yields
the best classification performance as shown in Table 1. We want to highlight the
results in Figure 8, where the model manages to separate juice and yoghurt packages
based on their text description. Refrigerated items, e.g., milk and juice packages, have
in general very similar shapes and the same color if they come from the same brand.
There are minor visual differences between items of the same brand that makes
it possible to differentiate between them, e.g., the picture of the main ingredient
on the package and ingredient description. Additionally, these items can be almost
identical depending on which side of the package that is present on the natural image.
When utilizing the text descriptions, we add useful information on how to distinguish
between visually similar items that have different ingredients and contents. This is
highly important for using computer vision models to distinguish between packaged
items without having to use other kinds of information, e.g., barcodes.

Text Description Length We showed that the text descriptions are useful for the
classification task, and that careful selection of the description length T is important
for achieving the best possible performance (see Section 2.3), In Figure 5, we observed
that most models achieve significantly better classification performance when the text
description length T increases up until T = 32. The reason for this increase is due
to the similarities between the descriptions of items from the same kind or brand,
such as milk and juice packages. For instance, in Table 4, the first sentence in the
descriptions for the milk packages only differ by the ninth word, which is organic
for the ecological milk package. This means that their descriptions will be identical
when T = 8. Therefore, the descriptions will become more different from each other
as we increase T , which helps the model to distinguish between items with similar
descriptions. However, the classification accuracies have more or less saturated when
setting T > 32, which is also due to the similarity between the descriptions. For
example, the bell pepper descriptions in Table 4 only differ by the second word that
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describes the color of the bell pepper, i.e., the words yellow and orange. We also
see that the third and fourth sentences in the descriptions of the milk packages are
identical. The text descriptions typically have words that separate the items in the
first or second sentence, whereas the following sentences provide general information
on ingredients and how the item can be used in cooking. For items of the same
kind but of different colors or brand, e.g., bell peppers or milk packages respectively,
the useful textual information for constructing good representations of grocery items
typically comes from a few words in the description that describes features of the
item. Therefore, the models yield better classification performance when T is set to
include at least the whole first sentence of the description. We could select T more
cleverly, e.g., by using different T for different descriptions to make sure that we
utilize the words that describe the item or filter out non-informative words for the
classification task.

VCCA vs. VCCA-private The main motivation for using VCCA-private is to
use private latent variables for modeling view-specific variations, e.g., image back-
grounds and writing styles of text descriptions. This could allow the model to build
shared representations that more efficiently combine salient information shared be-
tween the views for training better classifiers. This would then remove noise from
the shared representation since the private latent variables are responsible for mod-
eling the view-specific variations. For VCCA-privatexw, we observed that the private
latent spaces managed to group different image backgrounds and grocery items with
similar text descriptions respectively in Figure 9c and 9d respectively. This model
also performed on par with VCCAxw regarding classification performance in Table
1. However, we also saw in the same table that the VCCA-private models using
the iconic image perform poorly on the classification task compared to their VCCA
counterpart. The reason for why this model fails is because of a form of posterior
collapse [83] in the encoder for the iconic image, where the encoder starts outputting
random noise. We noticed this as the KL divergence term for the private latent vari-
able converged to zero when we trained the models for 500 epochs (see Figure 12 and
13), which means that the encoder outputs a distribution which equals a Gaussian
prior. The same phenomenon occurs for VCCA-private with the text description as
well. We have also experimented with other models with encoders, such as Deep
CCA and DCCAE, which also suffered from the collapsing encoder problem for the
additional views. Therefore, we believe that the collapsing effect is a consequence
of only having access to a single iconic image and text description for every grocery
item. Therefore, a potential solution would be to extend the dataset with multiple
web-scraped iconic images and text descriptions for every grocery item, which would
then establish some variability within the view for each item class. Another possible
solution would be to use data augmentation techniques to create some variability
in the web-scraped views. For example, we could take a denoising approach and
add noise to the iconic images which would force the decoder to reconstruct the real
iconic images [84]. For the text descriptions, we could mask words at random in the
encoder and let the decoder predict the whole description, which would work as a
form of word dropout [83, 85]. We leave this for future work if such augmentation
techniques can create the needed variability for learning more robust representations
as well as discovering the structures of the private latent spaces that this approach
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would bring.

Decoded Iconic Images We observed with image similarity metrics that the qual-
ity of decoded iconic images coheres to some extent with the classification perfor-
mance for VCCA models using the iconic images (see Section 2.5). We also showed
that the decoded images are visually plausible decoded images with respect to colors,
shapes, and identities of the grocery items in the dataset. The values for the metrics
PSNR, SSIM, and KL divergence are similar across the different VCCA models. Since
we used RGB values for estimating KL, we believe that including spatial information
of pixels or using other color spaces, e.g., Lab, could provide more information about
the dissimilarities between the decoded and true iconic images. To thoroughly assess
the relationship between good classification performance and accurately decoding the
iconic images, we also suggest evaluating the image quality on other image similar-
ity metrics, e.g., perceptual similarity [86]. Finally, we see the decoding of iconic
images as a promising method to evaluate the quality of the latent representations
as well as enhancing the interpretability of the classification. For example, we could
inspect decoded iconic images qualitatively or by using image similarity metrics to
determine how certain the model was about the present items in the natural images,
which could then be used as a tool for explaining misclassifications.

3.1 Conclusions

In this paper, we introduce a dataset with natural images of grocery items taken
in real grocery store environments. Each item class is accompanied by web-scraped
information in the form of an iconic image and a text description of the item. The
main application for this dataset is for training image classifiers that can assist visu-
ally impaired people when shopping for groceries but is not limited to this use case
only.

We selected the multi-view generative model VCCA that can utilize all of the
available data views for image classification. To evaluate the contribution to the
classification performance for each view, we conducted an ablation study comparing
classification accuracies between VCCA models with different combinations of the
available data types. We showed that utilizing the additional views with VCCA yields
higher accuracies on classifying grocery items over models only using the natural
images. The iconic images and text descriptions impose different structures of the
shared latent space, where we observed that iconic images help to group the items
based on their color and shape while text descriptions separate the items based on
differences in ingredients and flavor. These types of semantics that VCCA has learned
can be useful for generalizing to new grocery items and other object recognition
tasks. We also investigated VCCA-private, which introduces private latent variables
for view-specific variations, that separates the latent space into shared and private
spaces for each view to provide high-quality representations. However, we observed
that the private latent variables for the web-scraped views became uninformative by
modeling noise due to the lack of variations in the additional web-scraped views.
This encourages to explore new methods for extracting salient information from such
data views that can be beneficial for downstream tasks.

An evident direction of future work would be to investigate other methods for
utilizing the web-scraped views more efficiently. For instance, we could apply pre-
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trained word representations for the text description, e.g., BERT [85] or GloVe [87], to
see if they enable the construction of representations that can more easily distinguish
between visually similar items. Another interesting direction would be to experiment
with various data augmentation techniques in the web-scraped views to create view-
specific variations without the need for collecting and annotating more data. It is
also important to investigate how the model can be extended to recognize multiple
items. Finally, we see zero- and few-shot learning [67] of new grocery items and
transfer learning [88] as potential applications where our dataset can be used for
benchmarking of multi-view learning models on classification tasks.

4 Experimental Procedures

4.1 Resource Availability

Lead Contact: Marcus Klasson is the lead contact for this study and can be con-
tacted by email at mklas@kth.se.

Materials Availability: There are no physical materials associated with this study.

Data and Code Availability:
1. The Grocery Store dataset along with documentation is available at the follow-

ing Github repository: https://github.com/marcusklasson/GroceryStoreDataset.
2. The source code for the multi-view models along with documentation is avail-

able at the following Github repository: https://github.com/marcusklasson/

vcca grocerystore.

4.2 Methods

In this section, we outline the details of the models we use for grocery classification.
We begin by introducing autoencoders and SplitAEs [18]. Then we describe VAEs [74]
and how it is applied to single-view data, followed by the introduction of VCCA [7]
and how we adapt it to our dataset. We also discuss a variant of VCCA called
VCCA-private [7], which is used for extracting private information about each view
in addition to shared information across all views by factorizing the latent space.
The graphical model representations of the VAE, VCCA, and VCCA-private models
that have been used in this paper are shown in Figure 10. The model names use
subscripts to denote the views utilized for learning the shared latent representations.
For example, VCCAxi utilizes natural image features x and iconic images i, while
VCCAxiwy uses natural image features x and iconic images i, text descriptions w,
and class labels y.

4.2.1 Autoencoders and Split Autoencoders

The autoencoding framework can be used for feature extraction and learning latent
representations of data in unsupervised manners [89]. It begins with defining a
parameterized function called the encoder for extracting features. We denote the
encoder as fφ where φ includes its parameters, which commonly are the weights

mklas@kth.se
https://github.com/marcusklasson/GroceryStoreDataset
https://github.com/marcusklasson/vcca_grocerystore
https://github.com/marcusklasson/vcca_grocerystore
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and bias vectors of a neural network. The encoder is used for computing a feature
vector h = fφ(x) from the input data x. Another parameterized function gθ called the
decoder is also defined, that maps the feature h back into input space, i.e., x̂ = gθ(h).
The encoder and decoder are learned simultaneously to minimize the reconstruction
loss between the input and its reconstruction of all training samples. By setting
the dimension of the feature vector smaller than the input dimension, i.e., dh < dx,
the autoencoder can be used for dimensionality reduction which makes the feature
vectors suitable for training linear classifiers in a cheap way.

As in the case for the Grocery Store dataset, we have multiple views available
during training, while only the natural image view is present at test time. In this
setting, we can use a Split Autoencoder (SplitAE) to extract shared representations
by reconstructing all views during training from the one view that is available during
the test phase [17, 18]. As an example, we have the two-view case with x present at
both training and test while y is only available during training. We therefore define
an encoder fφ and two decoders gθx and gθy where both decoders inputs the same
representation h = fφ(x). The objective of the SplitAE is to minimize the sum of the
reconstruction losses, which will encourage representations h that best reconstructs
both views. The total loss is then

LSplitAE(θ, φ;x, y) = λxLx(x, gθx(h)) + λyLy(y, gθy (h)), (2)

where θx, θy ∈ θ and λx, λy are scaling weights for the reconstruction losses. For
images, the reconstruction loss can be the mean squared error, while the cross-entropy
loss is commonly used for class labels and text. This architecture can be extended
to more than two views by simply using view-specific decoders that input the shared
representation extracted from natural images. Note that in the case when the class
labels are available, we can use the class label decoder gθy as a classifier during
test time. Alternatively, we can train a separate classifier with the learned shared
representations after the SplitAE has been trained.

4.2.2 Variational Autoencoders with only Natural Images

The Variational Autoencoder (VAE) is a generative model that can be used for gen-
erating data from single views. Here, we describe how the VAE learns latent repre-
sentations of the data and how the model can be used for classification. VAEs define
a joint probability distribution pθ(x, z) = p(z)pθ(x|z), where p(z) is a prior distribu-
tion over the latent variables z and pθ(x|z) is the likelihood over the natural images
x given z. The prior distribution is often assumed to be an isotropic Gaussian dis-
tribution, p(z) = N (z |0, I), with the zero vector 0 as mean and the identity matrix
I as the covariance. The likelihood pθ(x|z) takes the latent variable z as input and
outputs a distribution parameterized by a neural network with parameters θ which
is referred to as the decoder network. A common distribution for natural images is
a multivariate Gaussian, pθ(x|z) = N (x |µx(z),σ2

x(z) � I), where µx(z) and σ2
x(z)

are the means and standard deviations of the pixels respectively outputted from the
decoder and � denotes element-wise multiplication. We wish to find latent variables
z that are likely to have generated x, which is done by approximating the intractable
posterior distribution pθ(z|x) with a simpler distribution qφ(z|x) [75]. This approxi-
mate posterior qφ(z|x) is referred to as the encoder network since it is parameterized
by a neural network φ which inputs x and outputs a latent variable z. Commonly,
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we let the approximate posterior to be Gaussian qφ(z|x) = N (z |µz(x), σ2
z(x) � I),

where the mean µz(x) and variance σ2
z(x) are the outputs of the encoder. The latent

variable z is then sampled using the mean and variance from the encoder with the
reparameterization trick [74, 90]. The goal is to maximize a tractable lower bound
on the marginal log-likelihood of x using qφ(z|x):

log pθ(x) ≥ L(θ, φ;x) = Eqφ(z|x) [ log pθ(x|z) ]−DKL(qφ(z|x) || p(z)). (3)

The last term is the Kullback-Leibler (KL) divergence [78] of the approximate pos-
terior from the prior distribution, which can be computed analytically when qφ(z|x)
and p(z) are Gaussians. The expectation can be viewed as a reconstruction loss
term, which can be approximated using Monte Carlo sampling from qφ(z|x). The
lower bound L is called the evidence lower bound (ELBO) and can be optimized
with stochastic gradient descent via backpropagation. The mean outputs µz(x) from
the encoder qφ(z|x) are commonly used as the latent representation of the natural
images x. We can use the representations µz(x) for training any classifier p(y|µz(x)),
e.g., a Softmax classifier, where y is the class label of x. We can therefore see
training the VAE as a pre-processing step, where we extract a lower-dimensional
representation of the data x which hopefully makes the classification problem easier
to solve. We can also extend the VAE with a generative classifier by incorporating
the class label y in the model [91, 92]. Hence, the VAE defines a joint distribu-
tion pθ(x, y, z) = p(z)pθx(x|z)pθy (y|z) where the class label decoder pθy (y|z) is used
as the final classifier. We therefore aim to maximize the ELBO on the marginal
log-likelihood over x and y:

log pθ(x, y) ≥L(θ, φ;x, y)

=λxEqφ(z|x) [ log pθx(x|z)] + λyEqφ(z|x)

[
log pθy (y|z)

]
−DKL(qφ(z|x) || p(z)).

(4)

The parameters λx and λy are used for scaling the magnitudes of the expected values.
When predicting the class label for an unseen natural image x∗, we can consider
multiple output predictions of the class label by sampling K different latent variables
for x∗ from the encoder to determine the final predicted class. For example, we could
either average the predicted class scores over K or use the maximum class score from
K samples as the final predictions. In this paper, we compute the average of the
predicted class scores using

ŷ = arg max
y

1

K

K∑
k=1

pθy (y|z(k)), z(k) ∼ qφ(z|x∗), (5)

where ŷ is the predicted class for the natural image x∗. We denote this model as
VCCAxy due to its closer resemblance to VCCA than VAE in this paper.

4.2.3 Variational Canonical Correlation Analysis for Utilizing
Multi-View Data

In this section, we describe the details of Variational Canonical Correlation Analysis
(VCCA) [7] for our application. In the Grocery Store dataset, the views can be the
natural images, iconic images, text descriptions, or class labels and we can use any
combination of those three in VCCA. To illustrate how we can employ this model
to the Grocery Store dataset, we let the natural images x and the iconic images i
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be the two views. We assume that both views x and i have been generated from a
single latent variable z. Similarly as with VAEs, VCCA defines a joint probability
distribution pθ(x, i, z) = p(z)pθx(x | z)pθi(i | z). There are now two likelihoods for
each view modeled by the decoders pθx(x | z) and pθi(i | z) are represented as neural
networks with parameters θx and θi. Since we want to classify natural images, the
other available views in the dataset will be missing when we have received a new
natural image. Therefore, the encoder qφ(z|x) only uses x as input to infer the
latent variable z shared across all views, such that we do not have to use inference
techniques that handle missing views. With this choice of approximate posterior, we
receive the following ELBO on the marginal log-likelihood over x and i that we aim
to maximize:

log pθ(x, i) ≥L(θ, φ;x, i)

=λxEqφ(z|x) [ log pθx(x|z)] + λiEqφ(z|x) [ log pθi(i|z) ]

−DKL(qφ(z|x) || p(z)).
(6)

The parameters λx and λi are used for scaling the magnitude of the expected values
for each view. We provide a derivation of the ELBO for three or more views in the
Supplemental Experimental Procedures. The representations µz(x) from the encoder
qφ(z|x) can be used for training a separate classifier. We can also add a class label
decoder pθy (y|z) to the model and use Equation 5 to predict the class of unseen
natural images.

4.2.4 Extracting Private Information of Views with VCCA-private

In the following section, we show how the VCCA model can be altered to extract
shared information between the views as well as view-specific private information to
enable more efficient posterior inference. Assuming that a shared latent variable z
is sufficient for generating all different views may have its disadvantages. Since the
information in the views is rarely fully independent nor fully correlated, information
only relevant to one of the views will be mixed with the shared information. This
may complicate the inference of the latent variables, which potentially can harm the
classification performance. To tackle this problem, previous works have proposed
learning separate latent spaces for modeling shared and private information of the
different views [7, 61, 69]. The shared information should represent the correlations
between the views, while the private information represents the independent varia-
tions within each view. As an example, the shared information between natural and
iconic images are the visual features of the grocery item, while their private informa-
tion is considered as the various backgrounds that can appear in the natural images
and the different locations of non-white pixels in the iconic images. For the text
descriptions, the shared information would be words that describe visual features
in the natural images, whereas the private information would be different writing
styles for describing grocery items with text. We adapt the approach from [7] called
VCCA-private and introduce private latent variables for each view along with the
shared latent variable. To illustrate how we employ this model to the Grocery Store
dataset, we let the natural images x and the text descriptions w be the two views.
The joint distribution of this model is written as

pθ(x,w, z, ux, uw) = pθx(x|z, ux)pθw(w|z, uw)p(z)p(ux)p(uw), (7)
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where ux and uw are the private latent variables for the x and w respectively. To
enable tractable inference of this model, we employ a factorized approximate posterior
distribution of the form

qφ(z, ux, uw|x,w) = qφz (z|x)qφx(ux|x)qφw(uw|w), (8)

where each factor is represented as an encoder network inferring its associated latent
variable. With this approximate posterior, the ELBO for VCCA-private is given by

log pθ(x,w) ≥Lprivate(θ, φ;x,w)

=λxEqφz (z|x),qφx (ux|x) [ log pθx(x|z, ux)]

+ λwEqφz (z|x),qφw (uw|w) [ log pθw(w|z, uw)]

−DKL(qφz (z|x) || p(z))
−DKL(qφx(ux|x) || p(ux))−DKL(qφw(uw|w) || p(uw)).

(9)

The expectations in Lprivate(θ, φ;x,w) in Equation 9 can be approximated using
Monte Carlo sampling from qφ(z|x). The sampled latent variables are concatenated
and then used as input to their corresponding decoder. We let the approximated
posteriors over both shared and private latent variables to be multivariate Gaussian
distributions and their prior distributions to be standard isotropic Gaussians N (0, I).
The KL divergences in Equation 8 can then be computed analytically. Since only
natural images are present during test time and because the shared latent variable
z since it should contain information about similarities between the views, e.g., the
object class, we use the encoder qφ(z|x) to extract latent representations µz(x) for
training a separate classifier. As for the VAE and standard VCCA, we can also add
a class label decoder pθy (y|z) only conditioned on z to the model and use Equation
5 to predict the class of unseen natural images. We evaluated the classification
performance of VCCA-private and compare it to the standard VCCA model only
using a single shared latent variable (see Section 2.3).

4.3 Experimental Setup

This section briefly describes the network architecture designs and the selection of
hyperparameters for the models. See Section II.1 for full details on the network
architectures and hyperparameters that we use.

Processing of Natural Images We use a DenseNet169 [77] as the backbone for
processing the natural images since this architecture showed good classification per-
formance in [6]. As our first baseline, we customize the output layer of DenseNet169
to our the Grocery Store dataset and train it from scratch to classify the natural
images. For the second baseline, we train a Softmax classifier on off-the-shelf fea-
tures from DenseNet169 pre-trained on the ImageNet dataset [19], where we extract
1664-dimensional from the average pooling layer before the classification layer in the
architecture. Using pre-trained networks as feature extractors for smaller datasets
has previously been proven to be a successful approach for classification tasks [93],
which makes it a suitable baseline for the Grocery Store dataset. We denoted the
DenseNet169 trained from scratch and the Softmax classifier trained on off-the-shelf
features as DenseNet-scratch and Softmax respectively in Section 2.
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Network Architectures We use the same architectures for SplitAE and VCCA
for a fair comparison. We train the models using off-the-shelf features extracted from
a pre-trained DenseNet169 for the natural images. No fine-tuning of the DenseNet
backbone was used in the experiments, which we leave for future research. The
image feature encoder and decoder consist of a single hidden layer, where the encoder
outputs the latent representation and the decoder reconstructs the image feature. We
use a DCGAN [94] generator architecture for the iconic image decoder reconstructing
the iconic images. The text description is predicted sequentially using an LSTM
network [95]. The label decoder uses a single hidden layer with 512 hidden units and
Leaky ReLU activation. The latent space dimension to dz = 200 for all SplitAE and
VCCA models in the experiments. In the VCCA-private models, the encoder and
decoders have the same architectures as in the VCCA models. We use a reversed
DCGAN generator as the iconic image encoder. The text description encoder is an
LSTM. We obtain an embedding for the description by averaging all of the hidden
states ht generated from the LSTM, i.e., 1

T

∑T
t=1 ht, and input it to a linear layer

that outputs the latent representation. The dimensions of the private latent spaces
are the same as the shared latent space dimension dz = 200.

Training Details In all experiments, we train all models for 200 epochs using the
Adam optimizer [96] with initial learning rate 10−4 and hyperparameters β1 = 0.9
and β2 = 0.999. We apply the sum-of-squares loss for the natural and iconic images
and the categorical cross-entropy loss for text descriptions and class labels. The latent
representations for the AE and SplitAE are the output from the encoder, while for
the VAE, VCCA, and VCCA-private we instead use the mean outputs µz(x) from
the encoder. In VCCA-private, we use the the mean outputs µux(x) and µuw(w) for
visualizing the private latent representations (see Figure 9). The Softmax classifiers
are trained for 100 epochs using with initial learning rate 10−4 and hyperparameters
β1 = 0.5 and β2 = 0.999. We run a hyperparameter search for the scaling weights λ
for the reconstruction losses of each view (see Section II.1 for more details).

Choice of Text Description Length T We wanted to investigate how the clas-
sification performance is affected by the text description length T for the SplitAE
and VCCA models using the text description w. Since the LSTM predicts the text
description sequentially, the computational time increases as the text description
length increases. We began by setting T = 16 because of how the sentence length
was set for the image captioning model in [12]. Then we created an interval by taking
steps with 8 words up to T = 40 and included the minimum, mean, and maximum
text description lengths which are T = 6, 36, and 91 respectively. We added two
additional points at T = 50 and 75 since for most models there was a slight increase
in classification performance when T was increased from 40 to 91.

Computational Time The computational time for the SplitAE and VCCA mod-
els differs depending on which views that are being used. We measured the number
of seconds per epoch (s/epoch) on an Nvidia GeForce RTX 2080 Ti, where an epoch
consists of the 2640 training samples. Running experiments with the text description
view took around 0.4–2.7 s/epoch with text description length T ∈ [6, 91]. Adding
the iconic image view and training the models took around 4.5–6.2 s/epoch depending
on the text description length.
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Visualization Method We use PCA to visualize the latent space by plotting
the latent representations from the trained encoders. PCA is used for projecting the
representations from dimension dz to a 2D space. We obtain the principal components
for the representations with the natural images from the training set. In all figures,
we plot the representations of test set images given the principal components obtained
from the training images (see Section 2.4). To distinguish more easily between the
class labels of the images, we occasionally use the iconic images from the dataset and
plot the corresponding iconic image of the representation on its location in the 2D
space.
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Figure 10: The graphical models of the VAE, VCCA, and VCCA-private, where nodes represent
random variables and edges indicate possible dependence. Grey nodes are observed random vari-
ables, while white nodes are latent random variables. The joint distribution is given by the product
of the conditional distributions of nodes given their parents. Abbreviations: VAE, Variational
Autoencoder; VCCA, Variational Canonical Correlation Analysis.
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(a) Histogram for the training split.

(b) Histogram for the test split.

(c) Histogram for the validation split.

Figure 11: Histograms of natural images for every class in the training (a), test (b), and validation
(c) splits of the Grocery Store dataset. We also show with different colors on the bins if the class is
either a Fruit, Vegetable, or Package item.
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Table 4: Examples of text descriptions and their corresponding class label and iconic image from
the Grocery Store dataset.

Class Label Iconic Image Text Description

Golden De-

licious Ap-

ple

Golden Delicious has a white juicy pulp and a greenish yellow shell. The taste is mellow and

sweet, making Golden Delicious suitable for desserts.

Red De-

licious

Apple

Red Delicious is a dark red apple with relatively soft pulp and sweet taste.

Orange
There are many different types of oranges that ripen and is sold during different parts of the

year. The orange is a very important vitamin C source and the vitamins are best kept if the

fruit is eaten naturally.

Yellow Bell

Pepper

The yellow pepper is much sweeter than the green. It also contains more vitamins and

antioxidants than the green. Peppers are good to eat raw in salads and as garnish, but are

also good to fry, stew or gratinate, for example with filling. Paprika also fits well in pots,

gratins and pies.

Orange

Bell Pep-

per

The orange pepper is sweeter than the green. It also contains more vitamins and antioxidants

than the green. Peppers are good to eat raw in salads and as garnish, but are also good to

fry, stew or gratinate, for example with filling. Paprika also fits well in pots, gratins and pies.

Arla

Medium

Fat Milk

Fresh skimmed milk made from Swedish milk from Arlag̊ardar. Skimmed milk has a delicious

full-bodied milk flavor and is a popular choice for breakfast cereals, porridge or as a drink for

the meal. Milk is a natural source of, for example, protein, calcium and vitamin B12. Protein

contributes to muscle building and calcium is needed to maintain a normal bone structure.

The brand Arla Ko guarantees that the product is made of 100% Swedish milk.

Arla Eco-

logical

Medium

Fat Milk

Fresh skimmed milk made from Swedish milk from organic Arlag̊ardar. Skimmed milk has a

delicious full flavor and is a popular choice for breakfast cereals, porridge or as a drink for the

meal. Milk is a natural source of, for example, protein, calcium and vitamin B12. Protein

contributes to muscle building and calcium is needed to maintain a normal bone structure.

The brand Arla Ko guarantees that the product is made of 100% Swedish milk. The new

brown carton has 24 percent lower climate impact compared to the previous white carton.

God Mor-

gon Orange

Juice

God Morgon Orange is pressed by sun-dried, hand-picked oranges. The package contains

juice from 2 kilograms of oranges!

Tropicana

Golden

Grapefruit

Juice

Tropicana Golden Grape is a ready to drink juice with pulp pressed on grapefruit. Not from

concentrate. Mildly pasteurized.
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Table 5: Classification accuracies on the test set for all models in percentage (%) along with the best
hyperparameter setting, i.e., the scaling weights λ and text description length T , for each model.
The column Accuracy corresponds to the fine-grained classification accuracy. The column Coarse
Accuracy corresponds to the classifying a class within the correct parent class. Results are averaged
using 10 different random seeds and we report both means and standard deviations. Abbreviations:
AE, Autoencoder; VAE, Variational Autoencoder; SplitAE, Split Autoencoder; VCCA, Variational
Canonical Correlation Analysis.

Model λx λi λw λy T Accuracy (%) Coarse Accuracy (%)

DenseNet-scratch - - - - - 67.33± 1.35 75.67± 1.15

Softmax - - - - - 71.67± 0.28 83.34± 0.32

AEx+Softmax 1 - - - - 70.69± 0.82 82.42± 0.58

VAEx+Softmax 1 - - - - 69.20± 0.46 81.24± 0.63

SplitAExy 1 - - 1000 - 70.34± 0.56 82.11± 0.38

VCCAxy 1 - - 1000 - 70.72± 0.56 82.12± 0.61

SplitAExi+Softmax 1 1000 - - - 77.68± 0.69 87.09± 0.53

VCCAxi+Softmax 1 1000 - - - 77.02± 0.51 86.46± 0.42

VCCA-privatexi+Softmax 1 10 - - - 73.04± 0.56 84.16± 0.51

SplitAExiy 1 1000 - 1000 - 77.43± 0.80 87.14± 0.57

VCCAxiy 1 1000 - 1000 - 77.22± 0.55 86.54± 0.51

VCCA-privatexiy 1 10 - 1000 - 74.04± 0.83 84.59± 0.83

SplitAExw+Softmax 1 - 1000 - 40 76.27± 0.66 86.45± 0.56

VCCAxw+Softmax 1 - 1000 - 75 75.37± 0.46 86.00± 0.32

VCCA-privatexw+Softmax 1 - 1000 - 75 75.11± 0.81 85.91± 0.55

SplitAExwy 1 - 1000 10 75 75.78± 0.84 86.13± 0.63

VCCAxwy 1 - 1000 10 75 74.72± 0.85 85.59± 0.78

VCCA-privatexwy 1 - 1000 1000 50 74.92± 0.74 85.59± 0.67

SplitAExiw+Softmax 1 1000 1000 - 24 77.79± 0.48 87.12± 0.62

VCCAxiw+Softmax 1 1000 1000 - 32 77.51± 0.51 86.69± 0.41

SplitAExiwy 1 1000 1000 1000 24 78.18± 0.53 87.26± 0.46

VCCAxiwy 1 1000 1000 1000 91 77.78± 0.45 86.88± 0.47

II Supplemental Experimental Procedures

II.1 Details on Experimental Setup

In this section, we provide the full details on the experimental setups.

Training DenseNet169 from Scratch We train a DenseNet169 on the dataset
from scratch as a baseline. We train the network using stochastic gradient descent
for 300 epochs and follow the learning rate schedule of Huang et al. [77], i.e., using
an initial learning rate of 0.1 and dividing it by 10 after 150 and 225 epochs. We
use a weight decay of 10−4 and Nesterov momentum of 0.9 without dampening. We
denote this network as DenseNet-scratch in the experiments.

Training the Softmax Classifier We use a Softmax classifier trained on off-
the-shelf features as another baseline. We use a DenseNet169 [77] pre-trained on
ImageNet 1K as the feature extractor, where we extract 1664-dimensional from the
average pooling layer before the classification layer in the architecture. The Softmax
classifier is trained for 100 epochs with batch size 64 to minimize the cross-entropy
loss. We use the Adam optimizer [96] with initial learning rate 10−4 and hyperpa-
rameters β1 = 0.5 and β2 = 0.999. Note that we used no regularization when training
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the Softmax classifier. We denote this classifier as Softmax in the experiments. This
training setup is also used when training the Softmax classifiers for SplitAE, VCCA,
and VCCA-private.

Architectures for Single-View Autoencoders We use a vanilla autoencoder
and a VAE as baselines that learn latent representations of the natural image features
only. These models are denoted as AEx and VAEx respectively in the experiments.
Their latent representations have dimension dz = 200 throughout all experiments.
The encoder and decoder networks consist of one hidden layer of 512 hidden units with
Leaky ReLU activation. The decoder aims to reconstruct the natural image features
and we use the sum-of-squares as the reconstruction loss during training. For the
VAE, we use the mean outputs µz(x) from the encoder as the latent representations of
the image features to train a Softmax classifier, which we denote as VAEx+Softmax.

Architectures for SplitAE and VCCA We use the same encoder and decoder
architecture for the natural image features as in the single-view autoencoders for
all SplitAE, VCCA, and VCCA-private models, i.e., one hidden layer of 512 hidden
units with Leaky ReLU activation. We set the latent dimension to dz = 200 in all
experiments. The class label decoders use the same architecture as the image feature
decoder and predict the class label by optimizing the cross-entropy loss. The iconic
image decoders use the generator architecture of the DCGAN [94]. This decoder
reconstructs the iconic images i ∈ R64×64×3 by minimizing the sum of squares loss.
The text descriptions are assumed to be a sequence of words w = (w1, . . . , wT ),
where T is the length of the description. We create a vocabulary V ∈ R658 of the
total number of unique words from all text descriptions in the dataset. The text
description decoder is an LSTM [95] followed by a linear layer that predicts the
next word in the description. More specifically, at time step t, the decoder yields
a multinomial probability distribution pθw(wt|wt−1, z) defined over wt ∈ V . The
LSTM is trained using teacher forcing, meaning that we use the previous ground
truth word as input at every time step during the training phase. We project each
word into an embedding space of dimensionality demb = 200 by using a lookup table
before the word is input to the LSTM. The hidden state h and memory state c of the
LSTM is initialized with a linear projection of the latent representation z to provide
the LSTM with some context about the natural image. We use the same dimension
for h and c as for z, i.e., dz = dh = dc = 200. We minimize the cross-entropy
loss at every time step by comparing the predicted word with the true word in the
description. We apply dropout [97] with a keep rate of 0.5 on the output hidden
state ht before we input it through the linear layer that predicts the word at time
step t.

Architectures for VCCA-private In the VCCA-private models, the decoders
has the same architectures as the VCCA models. The encoder for the shared latent
variable z is also the same as the encoder for the previous described models. The
encoder for the private latent variable ux uses an identical architecture as encoder for
z. We use a convolutional encoder for the iconic image private latent variable, which
is a reversed DCGAN generator outputting the mean µui(i) and variance σ2

ui(i).
The text description encoder is an LSTM with the same architectural details as the
LSTM decoder. We obtain an embedding for the description by averaging all of the
hidden states ht generated from the LSTM, i.e., 1

T

∑T
t=1 ht, and input it to a linear
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layer outputting the mean µuw(w) and the variance σ2
uw(w) for the private latent

variable for the text description. We use the same latent dimensions for the shared
and private latent variables, i.e., dz = dux = dui = duw = 200.

Training the Single- and Multi-View Autoencoders The single- and multi-
view autoencoding models are trained for 200 epochs with batch size 64 and aims to
minimize either their reconstruction losses or their corresponding ELBOs. We use
the Adam optimizer with initial learning rate 10−4 and hyperparameters β1 = 0.9
and β2 = 0.999 in all experiments. The mean outputs µz(x) from the encoder are
used as the latent representations of the image features to train a Softmax classifier.
For the class label decoder, we use K = 1 posterior samples for predicting the class
label during training, while we set K = 5 in the validation and test stages.

Grid Search We run a hyperparameter search for the scaling weights λ for the re-
construction losses of the views using a grid search with grid points {0.1, 1, 10, 100, 1000}.
The grid search is performed for all VCCA and VCCA-private models. The weight
for the natural image feature loss λx is used as a reference by setting it to λx = 1
throughout all experiments. This means that we only vary the scaling weights λi,
λw, and λy. We run the grid searches using three different random seeds and average
the resulting validation accuracies to select the best hyperparameter setting. Table
5 shows the best hyperparameter settings for the VCCA and VCCA-private models
with their test accuracies. Note that we use the same scaling weights for SplitAE as
the ones we found for its corresponding VCCA model. To summarize the grid search
results, it is always beneficial to use scaling weights λ > 1 for the models to enhance
the classification accuracy. This will make the models add some semantically mean-
ingful information to the latent space from the additional views, which makes the
models more suitable for downstream tasks such as classification.

II.2 Posterior Collapse in VCCA-private

We noticed in Table 1 that VCCA-private achieves similar classification performance
as standard VCCA when utilizing the text description w and even worse results when
utilizing the iconic image i. The private latent variables cannot capture any view-
specific variations when each class uses the same iconic image and text description
for every natural image. A consequence of this is that the iconic image and text
description can be identified by only using the shared latent variable z in the decoding
phase. The private latent variables are thus not necessary for determining which
iconic image or text description to generate, the generated view will be the same
anyway for every natural image of a specific class. The model then finds out that
the ELBO can be maximized by letting the approximate posteriors be equal to their
prior distributions, which minimize the KL divergences of the private latent variables.
This phenomenon is referred to as posterior collapse [83].

In Figure 12 and 13, we illustrate that the approximate posterior deduces to
its prior distribution – a zero-mean Gaussian with unit variance – during train-
ing. Figure 12(a) and 12(b) shows the KL divergences over epochs for VCCA-
privatexw and VCCA-privatexwy respectively. The number of words T = 24 is the
same for both models and we train the models for 500 epochs to emphasize that
DKL(qφw(uw|w) || p(uw)) goes towards zero. We believe that this is due to that there
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(a) VCCA-privatexw (b) VCCA-privatexwy

Figure 12: The measured KL divergences DKL(qφz (z|x) || p(z)) (red), DKL(qφx (ux|x) || p(ux))
(green), and DKL(qφw (uw|w) || p(uw)) (blue) over epochs. We increased the number of epochs
from 200 to 500 to demonstrate that the KL divergence for the private latent variable uw goes to
zero. The number of words T = 24 is the same for both models. The likelihood weights are set to
λw = 1000 and λy = 100. Abbreviations: VCCA, Variational Canonical Correlation Analysis; KL,
Kullback-Leibler.

(a) VCCA-privatexi (b) VCCA-privatexiy

Figure 13: The measured KL divergences DKL(qφz (z|x) || p(z)) (red), DKL(qφx (ux|x) || p(ux))
(green), and DKL(qφi (ui|i) || p(ui)) (blue) over epochs. We increased the number of epochs from
200 to 500 to demonstrate that the KL divergence for the private latent variable ui goes to zero. The
likelihood weights are set to λi = 10 and λy = 1000. Abbreviations: VCCA, Variational Canonical
Correlation Analysis; KL, Kullback-Leibler.

are no variations in the text descriptions within one class (see subsection Investiga-
tions of the Learned Representations in Results). We perform a similar experiment
with VCCA-privatexi and VCCA-privatexiy and plot their KL divergences in Figure
13. The KL divergence DKL(qφi(ui|w) || p(ui)) decreases to zero faster for these mod-
els than when we use the text description. We also observe that the KL divergence
DKL(qφx(ux|x) || p(ux)) decreases to zero as well for both models. Why the KL diver-
gence for the private latent variables decreases faster in the models with the iconic
image i is mainly because their likelihood weight λi is smaller than λw. We noticed
that the KL divergences of the private latent variables decreases slower towards zero
when λi is increased, probably because the model foremost focuses on minimizing
the reconstruction loss.
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II.3 Investigating Latent Representations in VCCA-privatexi

Figure 14 shows the shared and private latent spaces of VCCA-privatexi, as well as
the latent space of the standard VCCAxi for comparison. Note that the shared latent
spaces in Figure 14(a) and 14(b) have different structures mainly due to the different
settings of their likelihood weight λi, which is λi = 1000 for VCCAxi and λi = 10 for
VCCA-privatexi. We observe in Figure 14(c) that the natural images are structured
based on their similarities in background and camera setup. Across the upper right
and the lower left parts of the cluster, we find images of grocery items closely packed
together in bins. The middle and upper left part includes images with the hand of
the photographer and grey backgrounds, e.g., the floor and shelves in the grocery
store. Note that this private latent space is rather densely packed mainly because
the KL divergence DKL(qφx(ux|x) || p(ux)) is steadily decreasing towards zero (see
Figure 13(a)). This means that the approximate posterior qφx(ux|x) is collapsing to
its prior distribution, which is why the mean values µux are close to the origin of the
space. The mean values µui for the private latent variable ui are shown in Figure
14(d) using the iconic image. Note that every iconic image i is projected at the same
location in the latent space. We observe that similar iconic images are projected
close to each other. For instance, an orange, grapefruit and yellow bell pepper have
been projected in the upper part, packaged items are in the center parts and the left
region we find round objects with a dark red color. To the far right, we see a green
and a red apple that has been pushed far away from the similar iconic images on the
left. If we look closer into these iconic images, we observe that the apples on the right
have a higher stalk on top of the apple than the apples on the left side has, which
could be the reason why the model has separated them in the latent space. Another
interesting observation is that iconic images with multiple items, e.g., tomatoes, kiwis
and satsumas, have been projected into the lower region of the space. We conclude
that similar iconic images, based on color and their appearance in the image, are
grouped closely in the private latent space.
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(a) µz from VCCAxi (b) µz from VCCA-privatexi

(c) µux from VCCA-privatexi

(d) µui from VCCA-privatexi

Figure 14: Visualizations of the latent representations µz(x) from VCCAxi and VCCA-privatexi on
the first row followed by µux (x) and µui (i) for VCCA-privatexi. Abbreviations: VCCA, Variational
Canonical Correlation Analysis.
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II.4 Derivation of the ELBO for VCCA

Let x1:M denote the all observed data, i.e., x1:M = x1, . . . , xM , for M different views.
We derive the ELBO for VCCA by introducing the approximate posterior qφ(z|xm),
where xm is the only view that we use to infer the latent variable z. We now derive
the ELBO from the marginal log-likelihood log pθ(x1:M ) as

log pθ(x1:M ) = log pθ(x1:M )

∫
qφ(z|xm) dz

=

∫
qφ(z|xm) log pθ(x1:M ) dz

=

∫
qφ(z|xm) log

pθ(x1:M , z)

pθ(z|x1:M )
dz

=

∫
qφ(z|xm) log

pθ(x1:M , z)

pθ(z|x1:M )

qφ(z|xm)

qφ(z|xm)
dz

=

∫
qφ(z|xm)

(
log

qφ(z|xm)

pθ(z|x1:M )
+ log

pθ(x1:M , z)

qφ(z|xm)

)
dz

=DKL(qφ(z|xm) || pθ(z|x1:M )) + Eqφ(z|xm)

[
log

pθ(x1:M , z)

qφ(z|xm)

]
≥Eqφ(z|xm)

[
log

pθ(x1:M , z)

qφ(z|xm)

]
= L(x1:M ; θ, φ)

We use the factorization property of the joint distribution pθ(x1:M ) to further derive
the ELBO L(x1:M ; θ, φ):

L(θ, φ;x1:M ) =Eqφ(z|xm)

[
log

pθ1(x1|z) · · · pθM (xM |z)p(z)
qφ(z|xm)

]
=Eqφ(z|xm)

[
log pθ1(x1|z) + ...+ log pθM (xM |z) + log

p(z)

qφ(z|xm)

]
=Eqφ(z|xm) [log pθ1(x1|z)] + ...+ Eqφ(z|xm) [log pθM (xM |z)]
−DKL(qφ(z|xm) || p(z))

It may be necessary to balance the terms in the ELBO with some constant for every
term, especially when the dimensions and magnitudes differ between the modalities.
Thus, we introduce the likelihood weights λ1, ..., λM , such that the ELBO will be
written as
L(θ, φ;x1:M ) =λ1Eqφ(z|xm) [log pθ1(x1|z)] + ...+ λMEqφ(z|xm) [log pθM (xM |z)]

−DKL(qφ(z|xm) || p(z))
The likelihood weights λ1, ..., λM that are optimal for the task at hand can be found
with some hyperparameter search.
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Abstract

Replay-based continual learning have shown to be successful in mitigating catas-
trophic forgetting despite having limited access to historical data. However,
storing historical data is cheap in many real-world applications, yet replaying
all seen data would be prohibited due to processing time constraints. In such
settings, we propose learning the time to learn for a continual learning sys-
tem, in which we learn replay schedules over which tasks to replay at different
time steps. To demonstrate the importance of learning the time to learn, we
use Monte Carlo tree search in an ideal continual learning scenario to find the
proper replay schedule. We perform extensive evaluations to show the benefits
of replay scheduling in various memory settings and in combination with dif-
ferent replay methods. Moreover, the results indicate that the found schedules
are consistent with human learning insights. Our findings opens up for new
research directions that can bring current continual learning research closer to
real-world needs.

1 Introduction

Many organizations deploying machine learning systems receive large volumes of data
daily [1,2]. Although all historical data are stored in the cloud in practice, retraining
machine learning systems on a daily basis is prohibitive both in time and cost. In this
setting, the systems often need to continuously adapt to new tasks while retaining
the previously learned abilities. Continual learning (CL) methods [3,38] address this
challenge where, in particular, replay methods [4, 5] have shown to be very effective
in achieving great prediction performance. Replay methods mitigate catastrophic
forgetting by revisiting a small set of samples, which is feasible to process compared
to the size of the historical data. In the traditional CL literature, replay memories

137



138 PAPER C. REPLAY SCHEDULING IN CONTINUAL LEARNING

1 2 3 4 5
70

80

90

100

Task

A
c
c
u
ra

c
y
(%

) ACC: 89.66%

1 2 3 4 5
70

80

90

100

Task

ACC: 93.85%

1 2 3 4 5
70

80

90

100

Task

ACC: 93.17%

1 2 3 4 5
70

80

90

100

Task

ACC: 94.49% Task 1

Task 2

Task 3

Task 4

Task 5

Replay

Figure 1: Task accuracies on Split MNIST [14] when replaying only 10 samples of classes 0/1 at a
single time step. The black vertical line indicates when replay is used. ACC denotes the average
accuracy over all tasks after learning Task 5. Results are averaged over 5 seeds. These results show
that the time to replay the previous task is critical for the final performance.

are limited due to the assumption that historical data are not available. In the real-
world setting where historical data are in fact always available, the requirement of
small memory remains due to processing time and cost issues.

Recent research on replay-based CL has focused on the quality of memory sam-
ples [4, 6–11] or data compression to increase the memory capacity [5, 12, 13]. Most
previous methods allocate equal memory storage space for samples from old tasks,
and replay the whole memory to mitigate catastrophic forgetting. However, in life-
long learning settings, this simple strategy would be inefficient as the memory must
store a large number of tasks. Furthermore, uniform selection policy of samples to
revisit is commonly used which ignores the time of which tasks to learn again. This
stands in contrast to human learning where education methods focus on scheduling
of learning and rehearsal of previous learned knowledge. For example, spaced repeti-
tion [67,68,70], where the time interval between rehearsal increases, has been shown
to enhance memory retention.

We argue that finding the proper schedule of which tasks to replay in the fixed
memory setting is critical for CL. To demonstrate our claim, we perform a simple
experiment on the Split MNIST [14] dataset where each task consists of learning
the digits 0/1, 2/3, etc. arriving in sequence. The replay memory contains data
from task 1 and can only be replayed at one point in time. Figure 1 shows how the
task performances progress over time when the memory is replayed at different time
steps. In this example, the best final performance is achieved when the memory is
used when learning task 5. Note that choosing different time points to replay the
same memory leads to noticeably different results in the final performance. These
results indicate that scheduling the time when to apply replay can influence the final
performance significantly of a CL system.

To this end, we propose learning the time to learn, in which we learn replay
schedules of which tasks to replay at different times inspired from human learning [15].
To show the importance of replay scheduling, we take an episodic-learning approach
where a policy is learned from multiple trials selecting which tasks to replay in a
CL scenario. In particular, we illustrate in single CL environments by using Monte
Carlo tree search (MCTS) [16] as an example method that searches for good replay
schedules. The replay schedules from MCTS are evaluated by measuring the final
performance of a network trained on a sequence of CL tasks where the scheduled
replay samples have been used for mitigating catastrophic forgetting. We use this
way to show the importance of replay scheduling given an ideal environment to
highlight the need for learning replay schedules in real-world large scale CL tasks. In
summary, our contributions are:
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� We propose a new CL setting where historical data is available while the pro-
cessing time is limited, in order to adjust current CL research closer to real-
world needs (Section 3.1). In this new setting, we introduce replay scheduling
where we learn the time of which tasks to replay (Section 3.2).

� We argue that learning the time to learn is essential for CL performance. We
use MCTS as an example method to illustrate the benefits of replay scheduling
in CL, where MCTS searches over finite sets of replay memory compositions at
every task (Section 3.3).

� We demonstrate with six benchmark datasets that learned scheduling can im-
prove the CL performance significantly in the fixed size memory setting (Section
4.1 and 4.5). Moreover, we show that replay scheduling can be combined with
any memory selection technique and replay-based method (Section 4.3 and 4.4),
as well as being efficient in situations where the memory size is smaller than
the number of classes (Section 4.6).

2 Related Work

In this section, we give a brief overview of CL methods, essentially replay-based
methods, as well as spaced repetition techniques for human CL.

Continual Learning. Traditional CL can be divided into three main areas, namely
regularization-based, architecture-based, and replay-based approaches. Regularization-
based methods aim to mitigate catastrophic forgetting by protecting parameters in-
fluencing the predictive performance on known tasks from wide changes and use the
rest of the parameters for learning new tasks [9,14,17–22]. Architecture-based meth-
ods isolate task-specific parameters by either increasing network capacity [23–25] or
freezing parts of the network [26,27] to maintain good performance on previous tasks.
Replay-based methods mix samples from old tasks with the current dataset to miti-
gate catastrophic forgetting, where the replay samples are either stored in an external
memory [4, 5, 28–32] or generated using a generative model [33, 34]. Regularization-
based approaches and dynamic architectures have been combined with replay-based
approaches to methods to overcome their limitations [9, 13, 18, 35–44]. Our work
relates most to replay-based methods with external memory which we spend more
time on describing in the next paragraph.

Replay-based Continual Learning. A commonly used memory selection strat-
egy of replay samples is random selection. Much research effort has focused on select-
ing higher quality samples to store in memory [4,6–11,29,31,45]. Cahaudrhy et al. [4]
reviews several selection strategies in scenarios with tiny memory capacity, e.g., reser-
voir sampling [46], first-in first-out buffer [31], k-Means, and Mean-of-Features [10].
However, more elaborate selection strategies have been shown to give little benefit
over random selection for image classification problems [5, 18]. More recently, there
has been work on compressing raw images to feature representations to increase the
number of memory examples for replay [5, 12, 13]. Selecting the time to replay old
tasks has mostly been ignored in the literature, with an exception in [28] which re-
plays memory samples that would most interfere with a foreseen parameter update.
Our replay scheduling approach differs from the above mentioned works since we
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focus on learning to select which tasks to replay. Nevertheless, our scheduling can be
combined with any selection strategy and replay method.

Human Continual Learning. Humans are CL systems in the sense of learning
tasks and concepts sequentially. Furthermore, humans have the ability to memo-
rize experiences but forgets learned knowledge gradually rather than catastrophi-
cally [47]. Different learning techniques have been suggested for humans to memo-
rize better [48, 49]. An example is spaced repetition where time intervals between
rehearsal are gradually increased to improve long-term memory retention [15], where
the earliest documented works are from Ebbinghaus [50]. Further studies have shown
that memory training schedules with adjusted spaced repetition are better at preserv-
ing memory than using uniformly spaced rehearsal times [51,52]. Several works in CL
with neural networks are inspired by human learning techniques, including spaced
repetition [53–55], sleep mechanisms [22,26,56], and memory reactivation [5,57]. Re-
play scheduling is also inspired by spaced repetition, where we learn schedules of
which tasks to replay at different times.

3 Method

In this section, we describe our new problem setting of CL where historical data are
available while the processing time is limited when learning new tasks. In Section
3.1 and 3.2, we present the considered problem setting, as well as our idea of learning
schedules over which tasks to replay at different time steps to mitigate catastrophic
forgetting. We use MCTS [16] in an ideal CL environment that searches for good
replay schedules to show the importance of replay scheduling in CL (Section 3.3).

3.1 Problem Setting

We focus on a slightly new setting, considering the needs for CL in the real-world
where all historical data can be available since data storage is cheap. However, as this
data volume is typically huge, we are often prohibited from replaying all historical
data due to processing time constraints. Therefore, the goal is to determine which
historical tasks to revisit and sample a small replay memory from the selected tasks
to mitigate catastrophic forgetting as efficiently as possible.

Here, we introduce the notation of our problem setting which resembles the tradi-
tional CL setting for image classification. We let a neural network fθ, parameterized
by θ, learn T tasks sequentially from the datasets D1, . . . ,DT arriving one at a time.

The t-th dataset Dt = {(x(i)
t , y

(i)
t )}Nti=1 consists of Nt samples where x

(i)
t and y

(i)
t are

the i-th data point and class label respectively. The training objective at task t is
given by

min
θ

Nt∑
i=1

`(fθ(x
(i)
t ), y

(i)
t ), (1)

where `(·) is the loss function, e.g., cross-entropy loss in our case. When learning
task t, the network fθ is at risk of catastrophically forgetting the previous t−1 tasks.
Next, we describe our method for constructing this replay memory.

We assume that historical data from old tasks are accessible at any time step t.
However, due to processing time constraints, we can only fill a small replay memory
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M with M historical samples for replay. The challenge then becomes how to select
the M replay samples to efficiently retain knowledge of old tasks. We focus on
selecting the samples on task-level by deciding on the task proportion (p1, . . . , pt−1)
of samples to fetch from each task, where pi ≥ 0 is the proportion of M samples from
task i to place in M and

∑t−1
i=1 pi = 1. To simplify the selection of which tasks to

replay, we construct a discrete set of possible task proportions that can be used for
constructing M.

3.2 Replay Scheduling in Continual Learning

In this section, we describe our setup for enabling the scheduling for selecting replay
memories at different time steps. We define a replay schedule as a sequence S =
(a1, . . . ,aT−1), where the task proportions ai = (a1, . . . , aT−1) for 1 ≤ i ≤ T − 1 are
used for determining how many samples from seen tasks with which to fill the replay
memory at task i. We construct an action space with a discrete number of choices of
task proportions that can be selected at each task: At task t, we have t−1 historical
tasks that we can choose samples from. We create t − 1 bins bt = [b1, . . . , bt−1]
and sample a task index for each bin bi ∈ {1, . . . , t − 1}. The bins are treated as
interchangeable and we only keep the unique choices. For example, at task 3, we
have seen task 1 and 2, so the unique choices of vectors are [1, 1], [1, 2], [2, 2], where
[1, 1] indicates that all memory samples are from task 1, [1, 2] indicates that half
memory is from task 1 and the other half are from task etc. We count the number of
occurrences of each task index in bt and divide by t−1 to obtain the task proportion,
i.e., at = bincount(bt)/(t − 1). We round the number of replay samples from task
i, i.e., ai ·M , up or down accordingly to keep the memory size M fixed when filling
the memory. From this specification, we can build a tree of different replay schedules
to evaluate with the network. We outline the steps for creating the action space in
Algorithm 1 (see Appendix I).

Task 1
∅

Task 2

Task 3

Task 4
· · · · · · · · · · · ·

Task 5
· · · · · · · · · · · · · · · · · · · · · · · ·

Figure 2: Tree-shaped action space of possible replay memories
of size M = 8 at every task for Split MNIST.

Figure 2 shows an ex-
ample of a replay schedule
tree with Split MNIST [14]
where the memory size is
M = 8. Each level corre-
sponds to a task to learn and
we show some examples of
possible replay memories in
the tree that can be eval-
uated at each task. A re-
play schedule is represented
as a path traversal of differ-
ent replay memory compo-
sitions from task 1 to task
5. At task 1, the memory
M1 = ∅ is empty, whileM2

is filled with samples from task 1 at task 2. The memoryM3 can be composed with
samples from either task 1 or 2, or equally fill M3 with samples from both tasks.
All possible paths in the tree are valid replay schedules. We show three examples
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of possible schedules in Figure 2 for illustration: the blue path represents a replay
schedule where only task 1 samples are replayed. The red path represents using
memories with equally distributed tasks, and the purple path represents a schedule
where the memory is only filled with samples from the most previous task.

3.3 Monte Carlo Tree Search for Replay Schedules

In this section, we describe how we enable using MCTS for studying the benefits
of replay scheduling in CL scenarios. The tree-shaped action space of task propor-
tions described in Section 3.2 grows fast with the number of tasks, which complicates
studying replay scheduling in datasets with longer task-horizons. Since the search
space is too big for using exhaustive searches, we need a scalable method that enables
tree searches in large action spaces. To this end, we propose to use MCTS since it has
been successful in applications with large action spaces [58–61]. In our case, MCTS
concentrates the search for replay schedules in directions with promising CL perfor-
mance in the environment. We use MCTS in an ideal CL setting, wherein multiple
episodes are allowed, for demonstration purposes to show that replay scheduling can
be critical for the CL performance.

Each replay memory composition in the action space corresponds to a node that
MCTS can visit during a rollout. For instance, in Figure 2, the nodes correspond to
the possible replay memories which can be visited during the MCTS rollouts. At level
t, the node vt is related to a task proportion pt used for retrieving a replay memory
composition from the historical data at task t. One MCTS rollout corresponds to
traversing through all tree levels 1, ..., T to select the replay schedule S to use during
the CL training. Each task proportion pt from every visited node is stored in S
during the rollout. When reaching level T , we start the CL training and use S for
constructing the replay memories at each task. Next, we briefly outline the MCTS
steps for performing the search (details in Appendix I):
Selection. During a rollout, the current node vt either moves randomly to un-
visited children, or selects the next node by evaluating the Upper Confidence Tree
(UCT) [62] if all children has been visited earlier. The child vt+1 with the highest
UCT score is selected using the function from [59]:

UCT (vt, vt+1) = max(q(vt+1)) + C

√
2 log(n(vt))

n(vt+1)
, (2)

where q(·) is the reward function, C the exploration constant, and n(·) the number
of node visits.
Expansion. Whenever the current node vt has unvisited child nodes, the search
tree is expanded with one of the unvisited child nodes vt+1 selected with uniform
sampling.
Simulation and Reward. After expansion, the succeeding nodes are selected
randomly until reaching a terminal node vT . The task proportions from the vis-
ited nodes in the rollout constitutes the replay schedule S. After training the
network using S for replay, we calculate the reward for the rollout is given by

r = 1
T

∑T
i=1A

(val)
T,i , where A

(val)
T,i is the validation accuracy of task i at task T .

Backpropagation. Reward r is backpropagated from the expanded node vt to the
root v1, where the reward function q(·) and number of visits n(·) are updated at
each node.
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Figure 3: Average test accuracies over tasks after learning the final task (ACC) over the MCTS
simulations for all datasets, where ’S’ and ’P’ are used as short for ’Split’ and ’Permuted’. We
compare performance for MCTS (Ours) against random replay schedules (Random), Equal Task
Schedule (ETS), and Heuristic Scheduling (Heuristic) baselines. For the first three datasets, we
show the ACC for for training on all seen task datasets jointly (Joint), as well as the best ACC
found from a breadth-first search (BFS) as two upper bounds. All results have been averaged over 5
seeds. These results show that replay scheduling can improve over ETS and outperform or perform
on par with Heuristic across different datasets and network architectures.

4 Experiments

We evaluated our replay scheduling method empirically on six common benchmark
datasets for CL. We let MCTS select the result on the held-out test sets from the re-
play schedule that yielded the best reward on the validation set during the search.Full
details on experimental settings are in Appendix II and additional results are in Ap-
pendix III.

Datasets. We conduct experiments on six datasets commonly used as benchmarks
in the CL literature: Split MNIST [14,63], Fashion-MNIST [64], Split notMNIST [65],
Permuted MNIST [66], Split CIFAR-100 [67], and Split miniImagenet [68]. We ran-
domly sample 15% of the training data from each task to use for validation when
computing the reward for the MCTS simulations.

Baselines. We compare MCTS to using 1) random replay schedules (Random), 2)
equal task schedules (ETS), and 3) a heuristic scheduling method (Heuristic). The
ETS baseline uses equal task proportions, such that M/(t − 1) samples per task
are replayed during learning of task t, and use both training and validations sets for
training such that ETS use the same amount of data as MCTS. The Heuristic baseline
replays the tasks which accuracy on the validation set is below a certain threshold
proportional to the best achieved validation accuracy on the task. Here, the replay
memory is filled with M/k samples per task where k is the number of selected tasks.
If k = 0, then we skip applying replay at the current task. See Appendix II.1 for
more details on the Heuristic baseline.

Architectures. We use multi-head output layers and assume task labels are avail-
able at test time unless stated otherwise, except for Permuted MNIST where single-
head output layer is used. We use a 2-layer MLP with 256 hidden units for Split
MNIST, Split FashionMNIST, Split notMNIST, and Permuted MNIST. For Split
CIFAR-100, we use the CNN architecture used in [22, 68]. For Split miniImagenet,
we apply the reduced ResNet-18 from [31].
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Evaluation Metric. We use ACC as the average test accuracy over all tasks after
learning the final task and BWT for measuring forgetting [31], i.e.,

ACC =
1

T

T∑
i=1

AT,i, BWT =
1

T − 1

T−1∑
i=1

AT,i −Ai,i, (3)

where At,i is the test accuracy for task i after learning task t. We report means and
standard deviations of ACC and BWT using 5 different seeds on all datasets.

4.1 Performance Progress of MCTS

In the first experiments, we show that the replay schedules from MCTS yield better
performance than replaying an equal amount of samples per task. The replay mem-
ory size is fixed to M = 10 for Split MNIST, FashionMNIST, and notMNIST, and
M = 100 for Permuted MNIST, Split CIFAR-100, and Split miniImagenet. Uniform
sampling is used as the memory selection method for all methods in this experiment.
For the 5-task datasets, we provide the optimal replay schedule found from a breadth-
first search (BFS) over all 1050 possible replay schedules in our action space (which
corresponds to a tree with depth of 4) as an upper bound for MCTS. As the search
space grows fast with the number of tasks, BFS becomes computationally infeasible
when we have 10 or more tasks.

Figure 3 shows the progress of ACC over iterations by MCTS for all datasets.
We also show the best ACC metrics for Random, ETS, Heuristic, and BFS (where
appropriate) as straight lines. Furthermore, we include the ACC achieved by training
on all seen datasets jointly at every task (Joint) for the 5-task datasets. We observe
that MCTS outperforms Random and ETS successively with more iterations. Fur-
thermore, MCTS approaches the upper limit of BFS on the 5-task datasets. For
Permuted MNIST and Split CIFAR-100, the Heuristic baseline and MCTS perform
on par after 50 iterations. This shows that Heuristic with careful tuning of the vali-
dation accuracy threshold can be a strong baseline when comparing replay scheduling
methods.

4.2 Replay Schedule Visualizations
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Figure 4: Replay schedule learned from Split
CIFAR-100 visualized as a bubble plot. The task
proportions vary dynamically over time which would
be hard to replace by a heuristic method.

We visualize a learned replay sched-
ule from Split CIFAR-100 with mem-
ory size M = 100 to gain insights into
the behavior of the scheduling policy
from MCTS. Figure 4 shows a bub-
ble plot of the task proportions that
are used for filling the replay memory
at every task. Each circle color corre-
sponds to a historical task and the cir-
cle size represents its proportion of re-
play samples at the current task. The
sum of all points from all circles at
each column is fixed at the different
time steps since the memory size M is
fixed. The task proportions vary dy-
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Table 1: Performance comparison with ACC between MCTS (Ours), Random scheduling (Random),
Equal Task Schedule (ETS), and Heuristic Scheduling (Heuristic) with various memory selection
methods evaluated across all datasets. We provide the metrics for training on all seen task datasets
jointly (Joint) as an upper bound, as well as include the results from a breadth-first search (BFS)
with Uniform memory selection for the 5-task datasets. Replay memory sizes are M = 10 and
M = 100 for the 5-task and 10/20-task datasets respectively. We report the mean and standard
deviation averaged over 5 seeds. Ours performs better or on par with the baselines on most datasets
and selection methods, where MoF yields the best results in general.

Split MNIST Split FashionMNIST Split notMNIST

Memory Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Offline Joint 99.75 ± 0.06 0.01 ± 0.06 99.34 ± 0.08 -0.01 ± 0.14 96.12 ± 0.57 -0.21 ± 0.71
Uniform BFS 98.28 ± 0.49 -1.84 ± 0.63 98.51 ± 0.23 -1.03 ± 0.28 95.54 ± 0.67 -1.04 ± 0.87

Uniform

Random 94.91 ± 2.52 -6.13 ± 3.16 95.89 ± 2.03 -4.33 ± 2.55 91.84 ± 1.48 -5.37 ± 2.12
ETS 94.02 ± 4.25 -7.22 ± 5.33 95.81 ± 3.53 -4.45 ± 4.34 91.01 ± 1.39 -6.16 ± 1.82
Heuristic 96.02 ± 2.32 -4.64 ± 2.90 97.09 ± 0.62 -2.82 ± 0.84 91.26 ± 3.99 -6.06 ± 4.70
MCTS (Ours) 97.93 ± 0.56 -2.27 ± 0.71 98.27 ± 0.17 -1.29 ± 0.20 94.64 ± 0.39 -1.47 ± 0.79

k-means

Random 92.65 ± 1.38 -8.96 ± 1.74 93.11 ± 2.75 -7.76 ± 3.42 93.11 ± 1.01 -3.78 ± 1.43
ETS 92.89 ± 3.53 -8.66 ± 4.42 96.47 ± 0.85 -3.55 ± 1.07 93.80 ± 0.82 -2.84 ± 0.81
Heuristic 96.28 ± 1.68 -4.32 ± 2.11 95.78 ± 1.50 -4.46 ± 1.87 91.75 ± 0.94 -5.60 ± 2.07
MCTS (Ours) 98.20 ± 0.16 -1.94 ± 0.22 98.48 ± 0.26 -1.04 ± 0.31 93.61 ± 0.71 -3.11 ± 0.55

k-center

Random 95.48 ± 0.82 -5.40 ± 1.05 93.24 ± 2.84 -7.64 ± 3.51 91.70 ± 1.94 -5.33 ± 2.80
ETS 94.84 ± 1.40 -6.20 ± 1.77 97.28 ± 0.50 -2.58 ± 0.66 91.08 ± 2.48 -6.39 ± 3.46
Heuristic 94.55 ± 2.79 -6.47 ± 3.50 94.08 ± 3.72 -6.59 ± 4.57 92.06 ± 1.20 -4.70 ± 2.09
MCTS (Ours) 98.24 ± 0.36 -1.93 ± 0.44 98.06 ± 0.35 -1.59 ± 0.45 94.26 ± 0.37 -1.97 ± 1.02

MoF

Random 96.96 ± 1.34 -3.57 ± 1.69 96.39 ± 1.69 -3.66 ± 2.17 93.09 ± 1.40 -3.70 ± 1.76
ETS 97.04 ± 1.23 -3.46 ± 1.50 96.48 ± 1.33 -3.55 ± 1.73 92.64 ± 0.87 -4.57 ± 1.59
Heuristic 96.46 ± 2.41 -4.09 ± 3.01 95.84 ± 0.89 -4.39 ± 1.15 93.24 ± 0.77 -3.48 ± 1.37
MCTS (Ours) 98.37 ± 0.24 -1.70 ± 0.28 97.84 ± 0.32 -1.81 ± 0.39 94.62 ± 0.42 -1.80 ± 0.56

Permuted MNIST Split CIFAR-100 Split miniImagenet

Memory Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Offline Joint 95.34 ± 0.13 0.17 ± 0.18 84.73 ± 0.81 -1.06 ± 0.81 74.03 ± 0.83 9.70 ± 0.68

Uniform

Random 72.59 ± 1.52 -25.71 ± 1.76 53.76 ± 1.80 -35.11 ± 1.93 49.89 ± 1.03 -14.79 ± 1.14
ETS 71.09 ± 2.31 -27.39 ± 2.59 47.70 ± 2.16 -41.69 ± 2.37 46.97 ± 1.24 -18.32 ± 1.34
Heuristic 76.68 ± 2.13 -20.82 ± 2.41 57.31 ± 1.21 -30.76 ± 1.45 49.66 ± 1.10 -12.04 ± 0.59
MCTS (Ours) 76.34 ± 0.98 -21.21 ± 1.16 56.60 ± 1.13 -31.39 ± 1.11 50.20 ± 0.72 -13.46 ± 1.22

k-means

Random 71.91 ± 1.24 -26.45 ± 1.34 53.20 ± 1.44 -35.77 ± 1.31 49.96 ± 1.46 -14.81 ± 1.18
ETS 69.40 ± 1.32 -29.23 ± 1.47 47.51 ± 1.14 -41.77 ± 1.30 45.82 ± 0.92 -19.53 ± 1.10
Heuristic 75.57 ± 1.18 -22.11 ± 1.22 54.31 ± 3.94 -33.80 ± 4.24 49.25 ± 1.00 -12.92 ± 1.22
MCTS (Ours) 77.74 ± 0.80 -19.66 ± 0.95 56.95 ± 0.92 -30.92 ± 0.83 50.47 ± 0.85 -13.31 ± 1.24

k-center

Random 71.39 ± 1.87 -27.04 ± 2.05 48.29 ± 2.11 -40.88 ± 2.28 44.40 ± 1.35 -20.03 ± 1.31
ETS 69.11 ± 1.69 -29.58 ± 1.81 44.13 ± 1.06 -45.28 ± 1.04 41.35 ± 1.23 -23.71 ± 1.45
Heuristic 74.33 ± 2.00 -23.45 ± 2.27 50.32 ± 1.97 -37.99 ± 2.14 44.13 ± 0.95 -18.26 ± 1.05
MCTS (Ours) 76.55 ± 1.16 -21.06 ± 1.32 51.37 ± 1.63 -37.01 ± 1.62 46.76 ± 0.96 -16.56 ± 0.90

MoF

Random 78.80 ± 1.07 -18.79 ± 1.16 62.35 ± 1.24 -26.33 ± 1.25 56.02 ± 1.11 -7.99 ± 1.13
ETS 77.62 ± 1.12 -20.10 ± 1.26 60.43 ± 1.17 -28.22 ± 1.26 56.12 ± 1.12 -8.93 ± 0.83
Heuristic 77.27 ± 1.45 -20.15 ± 1.63 55.60 ± 2.70 -32.57 ± 2.77 52.30 ± 0.59 -9.61 ± 0.67
MCTS (Ours) 81.58 ± 0.75 -15.41 ± 0.86 64.22 ± 0.65 -23.48 ± 1.02 57.70 ± 0.51 -5.31 ± 0.55

namically over time in a sophisticated nonlinear way which would be hard to replace
by a heuristic method. Moreover, we can observe spaced repetition-style scheduling
on many tasks, e.g., task 1-3 are replayed with similar proportion at the initial tasks
but eventually starts varying the time interval between replay. Also, task 4 and 6
need less replay in their early stages, which could potentially be that they are simpler
or correlated with other tasks. We provide a similar visualization for Split MNIST in
Figure 8 in Appendix III.1 to bring more insights to the benefits of replay scheduling.
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Table 2: Performance comparison with ACC and BWT between scheduling methods MCTS (Ours),
Random, ETS, and Heuristic combined with replay-based methods HAL, MER, DER, and DER++.
Replay memory sizes are M = 10 and M = 100 for the 5-task and 10/20-task datasets respectively.
We report the mean and standard deviation averaged over 5 seeds. Results on Heuristic where
some seed did not converge is denoted by ∗. Applying MCTS to each method can enhance the
performance compared to using the baseline schedules.

Split MNIST Split FashionMNIST Split notMNIST

Method Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

HAL

Random 96.32 ± 1.77 -3.90 ± 2.28 90.42 ± 4.26 -10.75 ± 5.45 93.50 ± 1.10 -3.14 ± 1.56

ETS 97.21 ± 1.25 -2.80 ± 1.59 96.75 ± 0.50 -2.84 ± 0.75 92.16 ± 1.82 -5.04 ± 2.24

Heuristic 97.69 ± 0.19 -2.22 ± 0.24 ∗74.16 ± 11.19 ∗-31.26 ± 14.00 93.64 ± 0.93 -2.80 ± 1.20

MCTS (Ours) 97.96 ± 0.15 -1.85 ± 0.18 97.56 ± 0.51 -2.02 ± 0.63 94.47 ± 0.82 -1.67 ± 0.64

MER

Random 93.00 ± 3.22 -7.96 ± 4.15 96.20 ± 2.10 -2.31 ± 2.59 89.10 ± 2.57 -8.82 ± 3.26

ETS 92.97 ± 1.73 -8.52 ± 2.15 84.88 ± 3.85 -3.34 ± 5.59 90.56 ± 0.83 -6.11 ± 1.06

Heuristic 94.30 ± 2.79 -6.46 ± 3.50 96.91 ± 0.62 -1.34 ± 0.76 90.90 ± 1.30 -6.24 ± 1.96

MCTS (Ours) 96.44 ± 0.72 -4.14 ± 0.94 86.67 ± 4.09 0.85 ± 3.85 92.44 ± 0.77 -3.63 ± 1.06

DER

Random 95.91 ± 2.18 -4.40 ± 2.46 50.00 ± 0.00 -12.20 ± 0.07 78.76 ± 12.73 -11.91 ± 4.45

ETS 98.17 ± 0.35 -2.00 ± 0.42 97.69 ± 0.58 -2.05 ± 0.71 94.74 ± 1.05 -1.94 ± 1.17

Heuristic 94.57 ± 1.71 -6.08 ± 2.09 ∗72.49 ± 19.32 ∗-20.88 ± 11.46 ∗77.88 ± 12.58 ∗-12.66 ± 4.17

MCTS (Ours) 99.02 ± 0.10 -0.91 ± 0.13 98.33 ± 0.51 -1.26 ± 0.63 95.02 ± 0.33 -0.97 ± 0.81

DER++

Random 90.09 ± 10.02 -11.73 ± 12.38 ∗50.00 ± 0.00 ∗-12.20 ± 0.07 61.83 ± 9.84 -14.40 ± 10.67

ETS 97.98 ± 0.52 -2.24 ± 0.66 98.12 ± 0.40 -1.59 ± 0.52 94.53 ± 1.02 -1.82 ± 1.02

Heuristic 92.35 ± 2.42 -8.83 ± 2.99 ∗67.31 ± 21.20 ∗-24.86 ± 16.34 93.88 ± 1.33 -2.86 ± 1.49

MCTS (Ours) 98.84 ± 0.21 -1.14 ± 0.26 98.38 ± 0.43 -1.17 ± 0.51 94.73 ± 0.20 -1.21 ± 1.12

Permuted MNIST Split CIFAR-100 Split miniImagenet

Method Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

HAL

Random 88.93 ± 0.53 -6.77 ± 0.64 35.90 ± 2.47 -17.37 ± 3.76 40.86 ± 1.86 -5.12 ± 2.23

ETS 88.46 ± 0.86 -7.26 ± 0.90 34.90 ± 2.02 -18.92 ± 0.91 38.13 ± 1.18 -8.19 ± 1.73

Heuristic ∗66.63 ± 28.50 ∗-29.68 ± 27.90 35.07 ± 1.29 -24.76 ± 2.41 39.51 ± 1.49 -5.65 ± 0.77

MCTS (Ours) 89.14 ± 0.74 -6.29 ± 0.74 40.22 ± 1.57 -12.77 ± 1.30 41.39 ± 1.15 -3.69 ± 1.86

MER

Random 87.25 ± 0.47 -8.77 ± 0.59 42.68 ± 0.86 -35.56 ± 1.39 32.86 ± 0.95 -7.71 ± 0.45

ETS 73.01 ± 0.96 -25.19 ± 1.10 43.38 ± 1.81 -34.84 ± 1.98 33.58 ± 1.53 -6.80 ± 1.46

Heuristic 83.86 ± 3.19 -12.48 ± 3.60 40.90 ± 1.70 -44.10 ± 2.03 34.22 ± 1.93 -7.57 ± 1.63

MCTS (Ours) 79.72 ± 0.71 -17.42 ± 0.78 44.29 ± 0.69 -32.73 ± 0.88 32.74 ± 1.29 -5.77 ± 1.04

DER

Random 90.67 ± 0.31 -5.20 ± 0.30 56.17 ± 1.30 -29.03 ± 1.38 35.13 ± 4.11 -10.85 ± 2.92

ETS 85.71 ± 0.75 -11.15 ± 0.87 52.58 ± 1.49 -32.93 ± 2.04 35.50 ± 2.84 -10.94 ± 2.21

Heuristic 81.56 ± 2.28 -15.06 ± 2.51 55.75 ± 1.08 -31.27 ± 1.02 43.62 ± 0.88 -8.18 ± 1.16

MCTS (Ours) 90.11 ± 0.18 -5.89 ± 0.23 58.99 ± 0.98 -24.95 ± 0.64 43.46 ± 0.95 -9.32 ± 1.37

DER++

Random 89.83 ± 0.92 -6.03 ± 0.98 60.90 ± 0.89 -23.45 ± 1.34 46.78 ± 1.96 3.28 ± 1.35

ETS 85.25 ± 0.88 -11.60 ± 1.03 52.54 ± 1.06 -33.22 ± 1.51 41.36 ± 2.90 -4.07 ± 2.28

Heuristic 79.17 ± 2.44 -17.68 ± 2.68 56.70 ± 1.27 -30.33 ± 1.41 45.73 ± 0.84 -6.09 ± 1.24

MCTS (Ours) 89.84 ± 0.22 -6.13 ± 0.29 59.23 ± 0.83 -24.61 ± 0.91 49.45 ± 0.68 -3.12 ± 0.89

4.3 Combine with Different Memory Selection Methods

We show that our method can be combined with any memory selection method for
storing replay samples. In addition to uniform sampling, we apply various memory
selection methods commonly used in the CL literature, namely k-means clustering,
k-center clustering [9], and Mean-of-Features (MoF) [10]. We compare our method
and ETS combined with these different selection methods. The replay memory sizes
are M = 10 for the 5-task datasets and M = 100 for the 10- and 20-task datasets.
Table 1 shows the results across all datasets. We note that using the replay schedule
from MCTS mostly outperforms the baselines when using the alternative selection
methods, where MoF performs the best on most datasets.

4.4 Applying Scheduling to Recent Replay Methods

In this experiment, we show that replay scheduling can be combined with any replay
method to enhance the CL performance. We combine MCTS with Hindsight Anchor
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Figure 5: Performance comparison with ACC over various memory sizes for the methods, where (a)
shows results in the Task- and Domain-Incremental Learning (IL) settings, and (b) in the Class-IL
setting. All results have been averaged over 5 seeds. These results show that replay scheduling can
outperform the baselines on both small and large datasets across different backbone choices in the
different CL settings.

Learning (HAL) [37], Meta-Experience Replay (MER) [69], Dark Experience Replay
(DER) [35], and DER++. We provide the hyperparameter settings in Appendix II.2.
Table 2 shows the performance comparison between our proposed replay scheduling
against using Random, ETS, and Heuristic schedules for each method. The results
confirm that replay scheduling is important for the final performance given the same
memory constraints and it can benefit any existing CL framework.

4.5 Varying Memory Size

We show that our method can improve the CL performance across varying memory
sizes in different CL scenarios, namely, Task-Incremental Learning (IL), Domain-IL,
and Class-IL [70]. In the experiment for Task- and Domain-IL, we set the replay
memory size to ensure the ETS baseline replays an equal number of samples per
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class at the final task. The memory size is set to M = ncpt · nspc · (T − 1), where
ncpt is the number of classes per task in the dataset and nspc are the number of
samples per class we wish to replay at task T for the ETS baseline. Figure 5a shows
the results in the Task- and Domain-Incremental Learning (IL) scenarios, where we
observe that MCTS generally obtains better task accuracies than ETS, especially
for small memory sizes. Both MCTS and ETS perform better than Heur-GD as
M increases, which shows that Heur-GD requires careful tuning of the validation
thresholds.

In the Class-IL scenario, the task labels are absent at training and test time.
Here, the replay memory is always filled with at least 1 sample/class to avoid fully
forgetting non-replayed tasks. Each scheduling method then selects which tasks to
replay out of the remaining samplesMrest = M−t·ncpt samples. Figure 5b shows that
ETS approaches MCTS when M increases on the 5-task datasets. However, on the
more challenging Split CIFAR-100 and Split miniImagenet, MCTS outperforms ETS
clearly as M increases. These results show that selecting the proper replay schedule
is essential in various CL scenarios with both small and large datasets across different
backbone choices.

4.6 Efficiency of Replay Scheduling
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Figure 6: Number of replayed
samples/task for the 5-task
datasets in the tiny memory
setting. Ours use M = 2 samples
for replay, while the baselines
increment their memory per task.

We illustrate the efficiency of replay scheduling with
comparisons to several common replay-based CL
baselines in an even more extreme memory setting.
Our goal is to investigate if scheduling over which
tasks to replay can be more efficient in situations
where the memory size is even smaller than the num-
ber of classes. To this end, we set the replay memory
size for our method to M = 2 for the 5-task datasets,
such that only 2 samples can be selected for replay
at all times. For the 10- and 20-task datasets which
have 100 classes, we set M = 50. We then com-
pare against the most memory efficient CL baselines,
namely A-GEM [36], ER-Ring [4] which show promising results with 1 sample per
class for replay, and with uniform memory selection as reference. Additionally, we
compare to using random replay schedules (Random) with the same memory setting
as for MCTS. We visualize the memory usage for our method and the baselines when
training on a 5-task dataset in Figure 6. Figure 7 in Appendix II.3 shows the memory
usage for the other datasets.

Table 3 shows the ACC for each method across all datasets. Despite using fewer
samples for replay, MCTS performs on par with the best baselines and outperforms
them on Permuted MNIST. These results indicate that replay scheduling is an im-
portant research direction in CL, since storing every seen class in the memory could
be inefficient in settings with large number of tasks.
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Table 3: Performance comparison with ACC and BWT averaged over 5 seeds in the 1 sample/class
memory setting evaluated across all datasets. MCTS (Ours) has memory size M = 2 and M = 50 for
the 5-task and 10/20-task datasets respectively. The baselines replay all available memory samples.
MCTS performs on par with the best baselines and outperforms them on Permuted MNIST.

Split MNIST Split FashionMNIST Split notMNIST

Method ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Random 92.56 ± 2.90 -8.97 ± 3.62 92.70 ± 3.78 -8.24 ± 4.75 89.53 ± 3.96 -8.13 ± 5.02

A-GEM 94.97 ± 1.50 -6.03 ± 1.87 94.81 ± 0.86 -5.65 ± 1.06 92.27 ± 1.16 -4.17 ± 1.39

ER-Ring 94.94 ± 1.56 -6.07 ± 1.92 95.83 ± 2.15 -4.38 ± 2.59 91.10 ± 1.89 -6.27 ± 2.35

Uniform 95.77 ± 1.12 -5.02 ± 1.39 97.12 ± 1.57 -2.79 ± 1.98 92.14 ± 1.45 -4.90 ± 1.41

MCTS (Ours) 96.07 ± 1.60 -4.59 ± 2.01 97.17 ± 0.78 -2.64 ± 0.99 93.41 ± 1.11 -3.36 ± 1.56

Permuted MNIST Split CIFAR-100 Split miniImagenet

Method ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Random 70.02 ± 1.76 -28.22 ± 1.92 48.62 ± 1.02 -39.95 ± 1.10 48.85 ± 1.38 -14.55 ± 1.86

A-GEM 64.71 ± 1.78 -34.41 ± 2.05 42.22 ± 2.13 -46.90 ± 2.21 32.06 ± 1.83 -30.81 ± 1.79

ER-Ring 69.73 ± 1.13 -28.87 ± 1.29 53.93 ± 1.13 -34.91 ± 1.18 49.82 ± 1.69 -14.38 ± 1.57

Uniform 69.85 ± 1.01 -28.74 ± 1.17 52.63 ± 1.62 -36.43 ± 1.81 50.56 ± 1.07 -13.52 ± 1.34

MCTS (Ours) 72.52 ± 0.54 -25.43 ± 0.65 51.50 ± 1.19 -37.01 ± 1.08 50.70 ± 0.54 -12.60 ± 1.13

5 Conclusions

We propose learning the time to learn, i.e., in a real-world CL context, learning sched-
ules of which tasks to replay at different times. To the best of our knowledge, we are
the first to consider the time to learn in CL inspired by human learning techniques.
We demonstrated the benefits with replay scheduling by showing the performance
improvements with schedules found using MCTS on several CL benchmarks when
comparing against methods with fixed scheduling policies under the same memory
budgets. Furthermore, the dynamic behavior of the replay schedules showed similar-
ities to human learning techniques, such as spaced repetition, by replaying previous
tasks with varying time intervals. We also showed that replay scheduling can be com-
bined with any replay-based method as well as utilize the memory efficiently even
when the memory size is smaller than the number of classes. The proposed problem
setting brings CL research closer to real-world needs, especially in scenarios where
CL is applied under limited processing times but with rich amounts of historical data
available for replay.

Limitations and Future Work. In this work, we assumed that multiple episodes
are allowed in the CL environments to use MCTS. However, this is prohibited in
the CL setting since tasks can never be fully revisited. Hence, it would be useful
if we could learn replay scheduling policies that generalize to new CL scenarios for
mitigating catastrophic forgetting. Using MCTS for searching after such policies
can be inefficient as the algorithm needs to run for each dataset and application
separately. In future work, we will incorporate reinforcement learning methods that
generalize and extend to learning general policies that can be directly applied to
any new application and domain. This requires defining the state using various task
performance metrics such as accuracies and forgetting metrics, the action either in the
same space as in this work or as in continuous space with fractions of different tasks
in the memory, and the reward as final or accumulated CL performance. Finally, we
would like to explore choosing memory samples on an instance level as the current
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work selects samples on task level. This would also require a policy learning method
that scales to large action spaces which is a research challenge by itself.
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Appendix

This supplementary material is structured as follows:

� Appendix I: Pseudocode of MCTS in Algorithm 2 to provide more details about
our method.

� Appendix II: Full details of the experimental settings.
� Appendix III: Additional experimental results.

I Replay Scheduling Monte Carlo Tree Search Algorithm

We provide pseudo-code in Algorithm 2 outlining the steps for our method using
Monte Carlo tree search (MCTS) to find replay schedules described in the main paper
(Section 3.2). The MCTS procedure selects actions over which task proportions to fill
the replay memory with at every task, where the selected task proportions are stored
in the replay schedule S. The schedule is passed to EvaluateReplaySchedule(·)

http://yaroslavvb.com/upload/notMNIST/
http://yaroslavvb.com/upload/notMNIST/
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where the continual learning part executes the training with replay memories filled
according to the schedule. The reward for the schedule S is the average validation
accuracy over all tasks after learning task T , i.e., ACC, which is backpropagated
through the tree to update the statistics of the selected nodes. The schedule Sbest
yielding the best ACC score is returned to be used for evaluation on the held-out
test sets.

The function GetReplayMemory(·) is the policy for retrieving the replay mem-
oryM from the historical data given the task proportion p. The number of samples
per task determined by the task proportions are rounded up or down accordingly
to fill M with M replay samples in total. The function GetTaskProportion(·)
simply returns the task proportion that is related to given node.

The following steps are performed during one MCTS rollout (or iteration):
1. Selection involves either selecting an unvisited node randomly, or selecting the

next node by evaluating the UCT score (see Equation 2) if all children has been
visited already. In Algorithm 2, TreePolicy(·) appends the task proportions pt
to the replay schedule S at every selected node.

2. Expansion involves expanding the search tree with one of the unvisited child
nodes vt+1 selected with uniform sampling. Expansion(·) in Algorithm 2 appends
the task proportions pt to the replay schedule S of the expanded node.

3. Simulation involves selecting the next nodes randomly until a terminal node
vT is reached. In Algorithm 2, DefaultPolicy(·) appends the task proportions
pt to the replay schedule S at every randomly selected node until reaching the
terminal node.

4. Reward The reward for the rollout is given by the ACC of the validation sets for
each task. In Algorithm 2, EvaluateReplaySchedule(·) involves learning the
tasks t = 1, . . . , T sequentially and using the replay schedule to sample the replay
memories to use for mitigating catastrophic forgetting when learning a new task.
The reward r for the rollout is calculated after task T has been learnt.

5. Backpropagation involves updating the reward function q(·) and number of
visits n(·) from the expansion node up to the root node. See Backrpropagate(·)
in Algorithm 2.

Finally, in Algorithm 1, we outline the steps for how the action space of task propor-
tions was discretized to enable searching for replay schedules (Section 3.2).

Algorithm 1 Discretization of action space with task proportions

Require: Number of tasks T
1: T = () . Initialize sequence for storing actions
2: for i = 1, . . . , T − 1 do
3: Pi = {} . Set for storing task proportions at i
4: B = combinations([1 : i], i) . Get bin vectors of size i with bins 1, ..., i
5: B̄ = unique(sort(B)) . Only keep unique bin vectors

6: for bi ∈ B̂ do
7: ai = bincount(bi)/i . Calculate task proportion
8: Pi = Pi ∪ {ai} . Add task proportion to set
9: end for

10: T [i] = Pi . Add set of task proportions to action sequence
11: end for
12: return T . Return action sequence as discrete action space
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Algorithm 2 Replay Scheduling Monte Carlo tree search

Require: Tree nodes v1:T , Datasets D1:T , Learning rate η
Require: Replay memory size M
1: ACCbest ← 0, Sbest ← ()
2: while within computational budget do
3: S ← ()
4: vt, S ← TreePolicy(v1, S)
5: vT , S ← DefaultPolicy(vt, S)
6: ACC ← EvaluateReplaySchedule(D1:T , S,M)
7: Backpropagate(vt,ACC)
8: if ACC > ACCbest then
9: ACCbest ← ACC

10: Sbest ← S
11: end if
12: end while
13: return ACCbest, Sbest

14: function TreePolicy(vt, S)
15: while vt is non-terminal do
16: if vt not fully expanded then
17: return Expansion(vt, S)
18: else
19: vt ← BestChild(vt)
20: S.append(at), where at ← GetTaskProportion(vt)
21: end if
22: end while
23: return vt, S
24: end function

25: function Expansion(vt, S)
26: Sample vt+1 uniformly among unvisited children of vt
27: S.append(at+1), where at+1 ← GetTaskProportion(vt+1)
28: Add new child vt+1 to node vt
29: return vt+1, S
30: end function

31: function BestChild(vt)

32: vt+1 = arg max
vt+1∈ children of v

max(Q(vt+1)) + C

√
2 log(N(vt))
N(vt+1)

33: return vt+1

34: end function

35: function DefaultPolicy(vt, S)
36: while vt is non-terminal do
37: Sample vt+1 uniformly among children of vt
38: S.append(at+1), where at+1 ← GetTaskProportion(vt+1)
39: Update vt ← vt+1

40: end while
41: return vt, S
42: end function

43: function EvaluateReplaySchedule(D1:T , S,M)
44: Initialize neural network fθ
45: for t = 1, . . . , T do
46: a← S[t− 1]
47: M← GetReplayMemory(M,a)

48: for B ∼ D(train)
t do

49: θ ← SGD(B ∪M, θ, η)
50: end for
51: end for
52: A

(val)
1:T ← EvaluateAccuracy(fθ,D(val)

1:T )

53: ACC← 1
T

∑T
i=1 A

(val)
T,i

54: return ACC
55: end function

56: function Backpropagate(vt, R)
57: while vt is not root do
58: N(vt)← N(vt) + 1
59: Q(vt)← R
60: vt ← parent of vt
61: end while
62: end function
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II Experimental Settings

In this section, we describe the full details of the experimental settings used in this
paper.

Datasets. We conduct experiments on six datasets commonly used in the continual
learning literature. Split MNIST [14] is a variant of the MNIST [63] dataset where the
classes have been divided into 5 tasks incoming in the order 0/1, 2/3, 4/5, 6/7, and
8/9. Split Fashion-MNIST [64] is of similar size to MNIST and consists of grayscale
images of different clothes, where the classes have been divided into the 5 tasks T-
shirt/Trouser, Pullover/Dress, Coat/Sandals, Shirt/Sneaker, and Bag/Ankle boots.
Similar to MNIST, Split notMNIST [65] consists of 10 classes of the letters A-J with
various fonts, where the classes are divided into the 5 tasks A/B, C/D, E/F, G/H,
and I/J. We use training/test split provided by [39] for Split notMNIST. Permuted
MNIST [66] dataset consists of applying a unique random permutation of the pixels
of the images in original MNIST to create each task, except for the first task that
is to learn the original MNIST dataset. We reduce the original MNIST dataset to
10k samples and create 9 unique random permutations to get a 10-task version of
Permuted MNIST. In Split CIFAR-100 [67], the 100 classes are divided into 20 tasks
with 5 classes for each task [10,31]. Similarly, Split miniImagenet [68] consists of 100
classes randomly chosen from the original Imagenet dataset where the 100 classes are
divided into 20 tasks with 5 classes per task.

Network Architectures. We use a 2-layer MLP with 256 hidden units and ReLU
activation for Split MNIST, Split FashionMNIST, Split notMNIST, and Permuted
MNIST. We use a multi-head output layer for each dataset except Permuted MNIST
where the network uses single-head output layer. For Split CIFAR-100, we use a
multi-head CNN architecture built according to the CNN in [17, 22, 68], which con-
sists of four 3x3 convolutional blocks, i.e. convolutional layer followed by batch nor-
malization [71], with 64 filters, ReLU activations, and 2x2 Max-pooling. For Split
mniImagenet, we use the reduced ResNet-18 from [31] with multi-head output layer.

Hyperparameters. We train all networks with the Adam optimizer [72] with
learning rate η = 0.001 and hyperparameters β1 = 0.9 and β2 = 0.999. Note that
the learning rate for Adam is not reset before training on a new task. Next, we give
details on number of training epochs and batch sizes specific for each dataset:

� Split MNIST: 10 epochs/task, batch size 128.
� Split FashionMNIST: 30 epochs/task, batch size 128.
� Split notMNIST: 50 epochs/task, batch size 128.
� Permuted MNIST: 20 epochs/task, batch size 128.
� Split CIFAR-100: 25 epochs/task, batch size 256.
� Split miniImagenet: 1 epoch/task (task 1 trained for 5 epochs as warm up),

batch size 32.

Monte Carlo Tree Search. We run MCTS for 100 iterations in all experiments.
The replay schedules used in the reported results on the held-out test sets are from the
replay schedule that gave the highest reward on the validation sets. The exploration
constant for UCT in Equation 2 is set to C = 0.1 in all experiments [59].
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Computational Cost. All experiments were performed on one NVIDIA GeForce
RTW 2080Ti. The wall clock time for ETS on Split MNIST was around 1.5 minutes,
and MCTS and BFS takes 40 seconds on average to run one iteration, where BFS
runs 1050 iterations in total for Split MNIST.

Implementations. We adapted the implementation released by Borsos et al. [7]
for the memory selection strategies Uniform sampling, k-means clustering, k-center
clustering [9], and Mean-of-Features [10]. For HAL [37], MER [69], DER [35], and
DER++, we follow the implementations released by [35] for each method to apply
them to our replay scheduling methods. Furthermore, we follow the implementations
released in [4] and [73] for A-GEM [36] and ER-Ring [4]. For MCTS, we adapted
the implementation from https://github.com/int8/monte-carlo-tree-search to search for
replay schedules.

Experimental Settings for Single Task Replay Memory Experiment. We
motivated the need for replay scheduling in continual learning with Figure 1 in Section
1. This simple experiment was performed on Split MNIST where the replay memory
only contains samples from the first task, i.e., learning the classes 0/1. Furthermore,
the memory can only be replayed at one point in time and we show the performance
on each task when the memory is replayed at different time steps. We set the memory
size to M = 10 samples such that the memory holds 5 samples from both classes. We
use the same network architecture and hyperparameters as described above for Split
MNIST. The ACC metric above each subfigure corresponds to the ACC for training
a network with the single task memory replay at different tasks. We observe that
choosing different time points to replay the same memory leads to noticeably different
results in the final performance, and in this example, the best final performance is
achieved when the memory is used when learning task 5. Therefore, we argue that
finding the proper schedule of what tasks to replay at what time in the fixed memory
situation can be critical for continual learning.

II.1 Heuristic Scheduling Baseline

We implemented a heuristic scheduling baseline to compare against MCTS. The
baseline keeps a validation set for the old tasks and replays the tasks which validation
accuracy is below a certain threshold. We set the threshold in the following way: Let
At,i be the validation accuracy for task t evaluated at time step i. The best evaluated

validation accuracy for task t at time i is given by A
(best)
t,i = max({At,1, ..., At,i}). The

condition for replaying task t on the next time step is then At,i < τA
(best)
t,i , where

τ ∈ [0, 1] is a ratio controlling how much the current accuracy on task t is allowed to
decrease w.r.t. the best accuracy. The replay memory is filled with M/k, where k is
the number of tasks that need to be replayed according to their decrease in validation
accuracy. This heuristic scheduling corresponds to the intuition of re-learning when
a task has been forgotten. Training on the current task is performed without replay
if the accuracy on all old tasks is above their corresponding threshold.

Grid search for τ . We performed a coarse-to-fine grid search for the ratio τ on
each dataset. The best value for τ is selected according to the highest mean accuracy
on the validation set averaged over 5 seeds. The validation set consists of 15% of the

https://github.com/int8/monte-carlo-tree-search


II. EXPERIMENTAL SETTINGS 159

training data and is the same for MCTS. We use the same experimental settings as
described in Appendix II. The memory sizes are set to M = 10 and M = 100 for
the 5-task datasets and the 10/20-task datasets respectively, and we apply uniform
sampling as the memory selection method. We provide the ranges for τ that was
used on each dataset and put the best value in bold:

� Split MNIST: τ = [0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99]
� Split FashionMNIST: τ = [0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99]
� Split notMNIST: τ = [0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99]
� Permuted MNIST: τ = [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 0.95, 0.97, 0.99]
� Split CIFAR-100: τ = [0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9, 0.95,

0.97, 0.99]
� Split miniImagenet: τ = [0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.97,

0.99]

Note that we use these values for τ on all experiments with Heuristic for the cor-
responding datasets. The performance for this heuristic highly depends on careful
tuning for the ratio τ when the memory size or memory selection method changes,
as can be seen in in Figure 5 and Table 1. We also provide the ranges for τ that
was used on each dataset in the Class Incremental Learning setting and put the best
value in bold:

� Split MNIST: τ = {0.2, 0.3, 0.5, 0.75, 0.9}
� Split FashionMNIST: τ = {0.2, 0.3, 0.5, 0.75, 0.9}
� Split notMNIST: τ = {0.2, 0.3, 0.5, 0.75, 0.9}
� Split CIFAR-100: τ = {0.01, 0.025, 0.05, 0.1, 0.25, 0.5}
� Split miniImagenet: τ = {0.01, 0.025, 0.05, 0.1, 0.25, 0.5}

II.2 Hyperparameters for Recent Replay Methods

In Section 4.4, we showed that MCTS can be applied to any replay method. We
combined MCTS together with four recent replay methods, namely Hindsight Anchor
Learning (HAL) [37], Meta Experience Replay (MER) [69], and Dark Experience
Replay (DER) [35]. Table 2 shows the ACC and BWT for all methods combined
with the scheduling from Random, ETS, Heuristic, and MCTS. We observe that
MCTS can further improve the performance for each of the replay methods across
the different datasets.

We present the hyperparameters used for each method in Table 4. The hyperpa-
rameters for each method are denoted as

� HAL. η: learning rate, λ: regularization, γ: mean embedding strength, β:
decay rate, k: gradient steps on anchors

� MER. γ: across batch meta-learning rate, β: within batch meta-learning rate
� DER. α: loss coefficient for memory logits
� DER++. α: loss coefficient for memory logits, β: loss coefficient for memory

labels

We used the same architectures and hyperparameters as described in Appendix II
for all datasets, except for the optimizer in HAL where we used the SGD optimizer
since using Adam made the model diverge in our experiments. We used the Adam
optimizer with learning rate η = 0.001 for MER, DER, and DER++.
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Table 4: Hyperparameters for replay-based methods HAL, MER, DER and DER++ used in exper-
iments on applying MCTS to recent replay-based methods in Section 4.4.

5-task Datasets 10- and 20-task Datasets

Method Hyperparam. S-MNIST S-FashionMNIST S-notMNIST P-MNIST S-CIFAR-100 S-miniImagenet

HAL

η 0.1 0.1 0.1 0.1 0.03 0.03

λ 0.1 0.1 0.1 0.1 1.0 0.03

γ 0.5 0.1 0.1 0.1 0.1 0.1

β 0.7 0.5 0.5 0.5 0.5 0.5

k 100 100 100 100 100 100

MER
γ 1.0 1.0 1.0 1.0 1.0 1.0

β 1.0 0.01 1.0 1.0 0.1 0.1

DER α 0.2 0.2 0.1 1.0 1.0 0.1

DER++
α 0.2 0.2 0.1 1.0 1.0 0.1

β 1.0 1.0 1.0 1.0 1.0 1.0

II.3 Memory Usage in Efficiency of Replay Scheduling
Experiment

We visualize the memory usage for Permuted MNIST and the 20-task datasets Split
CIFAR-100 and Split miniImagenet in Figure 7 for our method and the baselines used
in the experiment in Section 4.6. Our method uses a fixed memory size of M = 50
samples for replay on all three datasets. The memory size capacity for our method is
reached after learning task 6 and task 11 on the Permuted MNIST and the 20-task
datasets respectively, while the baselines continue incrementing their replay memory
size.

2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100

Task

#
R

ep
la

y
ed

S
a
m

p
le

s

Memory Usage for 10-task Permuted MNIST

Ours Baselines

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10
20
30
40
50
60
70
80
90

100

Task

#
R

ep
la

y
ed

S
a
m

p
le

s

Memory Usage for the 20-task Datasets

Ours Baselines

Figure 7: Number of replayed samples per task for 10-task Permuted MNIST (top) and the 20-task
datasets in the experiment in Section 4.6. The fixed memory size M = 50 for our method is reached
after learning task 6 and task 11 on the Permuted MNIST and the 20-task datasets respectively,
while the baselines continue incrementing their number of replay samples per task.
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Figure 8: Comparison of test classification accuracies for Task 1-5 on Split MNIST from a network
trained without replay (Finetune), ETS, and RS-MCTS (Ours). The ACC metric for each method
is shown on top of each figure. We also visualize the replay schedule found by RS-MCTS as a bubble
plot to the right. The memory size is set to M = 10 with uniform memory selection for ETS and
RS-MCTS. Results are shown for 1 seed.

III Additional Experimental Results

In this section, we bring more insights to the benefits of replay scheduling in Section
III.1, provide statistical significance tests for the experiments on memory selection,
applying scheduling to recent replay methods, and efficiency of replay scheduling in
Section III.2, and show performance metrics and statistical significance tests for the
varying memory size experiments in Section III.3.

III.1 Replay Schedule Visualization for Split MNIST

In Figure 8, we show the progress in test classification performance for each task when
using ETS and RS-MCTS with memory size M = 10 on Split MNIST. For compari-
son, we also show the performance from a network that is fine-tuning on the current
task without using replay. Both ETS and RS-MCTS overcome catastrophic forget-
ting to a large degree compared to the fine-tuning network. Our method RS-MCTS
further improves the performance compared to ETS with the same memory, which
indicates that learning the time to learn can be more efficient against catastrophic
forgetting. Especially, Task 1 and 2 seems to be the most difficult task to remember
since it has the lowest final performance using the fine-tuning network. Both ETS
and RS-MCTS manage to retain their performance on Task 1 using replay, however,
RS-MCTS remembers Task 2 better than ETS by around 5%.

To bring more insights to this behavior, we have visualized the task proportions
of the replay examples using a bubble plot showing the corresponding replay schedule
from RS-MCTS in Figure 8(right). At Task 3 and 4, we see that the schedule fills the
memory with data from Task 2 and discards replaying Task 1. This helps the network
to retain knowledge about Task 2 better than ETS at the cost of forgetting Task 3
slightly when learning Task 4. This shows that the learned policy has considered
the difficulty level of different tasks. At the next task, the RS-MCTS schedule has
decided to rehearse Task 3 and reduces replaying Task 2 when learning Task 5. This
behavior is similar to spaced repetition, where increasing the time interval between
rehearsals helps memory retention. We emphasize that even on datasets with few
tasks, using learned replay schedules can overcome catastrophic forgetting better
than standard ETS approaches.
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III.2 Statistical Significance Tests

We provide p-values from Welch’s t-tests to show the statistical significance between
the methods in the experiments on different memory selections methods (Section
4.3), applying scheduling to recent replay methods (Section 4.4), and efficiency of
replay scheduling (Section 4.6).

Memory Selection Methods. Table 5 presents the statistical significance tests
between MCTS and the baselines that corresponds to the performance results in
Table 1. We note that our method in general achieves significantly higher ACC
comparing to the baselines showing that learning the time to learn is important.

Recent Replay Methods. Table 6 presents the statistical significance tests be-
tween MCTS and the baselines that corresponds to the performance results in Table
1. We note that our method (MCTS) in general achieves significantly higher ACC
compared to the scheduling baselines, which shows that replay scheduling can im-
prove the CL performance when combined with any replay method.

Efficiency of Scheduling. Table 7 presents the statistical significance tests be-
tween MCTS and the baselines that corresponds to the performance results in Table
3. Our method (MCTS) mostly performs on par with the baselines, but is signifi-
cantly better than the baselines on Permuted MNIST, despite that MCTS replays
fewer samples than the baselines.

Table 5: Two-tailed Welch’s t-test results for the various memory selection methods presented in
Table 1.

Split MNIST Split FashionMNIST Split notMNIST

Memory Schedule t p t p t p

Uniform
MCTS vs Random 2.34 0.074 2.34 0.078 3.66 0.017

MCTS vs ETS 1.82 0.140 1.39 0.236 5.04 0.005

MCTS vs Heuristic 1.60 0.178 3.64 0.017 1.69 0.166

k-means
MCTS vs Random 7.97 0.001 3.90 0.017 0.81 0.445

MCTS vs ETS 3.00 0.040 4.54 0.007 -0.36 0.732

MCTS vs Heuristic 2.27 0.085 3.55 0.022 3.15 0.015

k-center
MCTS vs Random 6.15 0.001 3.37 0.027 2.59 0.057

MCTS vs ETS 4.71 0.007 2.56 0.037 2.53 0.062

MCTS vs Heuristic 2.62 0.057 2.13 0.099 3.51 0.019

MoF
MCTS vs Random 2.07 0.103 1.68 0.163 2.10 0.093

MCTS vs ETS 2.13 0.095 1.99 0.110 4.11 0.007

MCTS vs Heuristic 1.58 0.188 4.21 0.008 3.15 0.019

Permuted MNIST Split CIFAR-100 Split miniImagenet

Memory Schedule t p t p t p

Uniform
MCTS vs Random 4.14 0.005 2.67 0.033 0.49 0.636

MCTS vs ETS 4.18 0.007 7.30 0.000 4.52 0.003

MCTS vs Heuristic -0.29 0.780 -0.87 0.412 0.82 0.441

k-means
MCTS vs Random 7.91 0.000 4.39 0.003 0.61 0.565

MCTS vs ETS 10.83 0.000 12.93 0.000 7.42 0.000

MCTS vs Heuristic 3.05 0.019 1.31 0.255 1.87 0.099

k-center
MCTS vs Random 4.70 0.003 2.32 0.051 2.85 0.024

MCTS vs ETS 7.25 0.000 7.46 0.000 6.94 0.000

MCTS vs Heuristic 1.92 0.100 0.82 0.437 3.89 0.005

MoF
MCTS vs Random 4.26 0.004 2.67 0.037 2.75 0.036

MCTS vs ETS 5.86 0.001 5.69 0.001 2.57 0.045

MCTS vs Heuristic 5.26 0.002 6.22 0.002 13.90 0.000
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Table 6: Two-tailed Welch’s t-test results for the alternative replay methods results presented in
Table 2.

Split MNIST Split FashionMNIST Split notMNIST

Memory Schedule t p t p t p

HAL
MCTS vs Random 1.84 0.139 3.33 0.028 1.41 0.198

MCTS vs ETS 1.20 0.295 2.27 0.053 2.31 0.064

MCTS vs Heuristic 2.26 0.056 4.18 0.014 1.34 0.218

MER
MCTS vs Random 2.08 0.099 -4.15 0.006 2.48 0.059

MCTS vs ETS 3.71 0.012 0.64 0.542 3.32 0.011

MCTS vs Heuristic 1.48 0.204 -4.96 0.007 2.04 0.084

DER
MCTS vs Random 2.85 0.046 190.21 0.000 2.56 0.063

MCTS vs ETS 4.64 0.007 1.64 0.139 0.51 0.635

MCTS vs Heuristic 5.21 0.006 2.67 0.055 2.73 0.053

DER++
MCTS vs Random 1.75 0.156 227.62 0.000 6.68 0.003

MCTS vs ETS 3.09 0.026 0.89 0.397 0.39 0.712

MCTS vs Heuristic 5.36 0.006 2.93 0.043 1.26 0.272

Permuted MNIST Split CIFAR-100 Split miniImagenet

Memory Schedule t p t p t p

HAL
MCTS vs Random 0.46 0.657 2.96 0.022 0.49 0.640

MCTS vs ETS 1.20 0.266 4.16 0.004 3.97 0.004

MCTS vs Heuristic 1.58 0.189 5.07 0.001 2.01 0.082

MER
MCTS vs Random -17.61 0.000 2.92 0.020 -0.14 0.889

MCTS vs ETS 11.24 0.000 0.95 0.386 -0.84 0.425

MCTS vs Heuristic -2.54 0.059 3.70 0.013 -1.27 0.244

DER
MCTS vs Random -3.12 0.019 3.46 0.010 3.96 0.014

MCTS vs ETS 11.36 0.000 7.18 0.000 5.31 0.003

MCTS vs Heuristic 7.47 0.002 4.44 0.002 -0.25 0.809

DER++
MCTS vs Random 0.03 0.981 -2.75 0.025 2.57 0.051

MCTS vs ETS 10.17 0.000 9.94 0.000 5.43 0.004

MCTS vs Heuristic 8.72 0.001 3.34 0.013 6.89 0.000

Table 7: Two-tailed Welch’s t-test results for efficiency of replay scheduling presented in Table 3.

Split MNIST Split FashionMNIST Split notMNIST

Methods t p t p t p

MCTS vs Random 2.12 0.077 2.32 0.076 1.89 0.122

MCTS vs A-GEM 1.00 0.347 4.08 0.004 1.41 0.195

MCTS vs ER-Ring 1.01 0.342 1.18 0.292 2.11 0.076

MCTS vs Uniform 0.30 0.770 0.07 0.950 1.39 0.203

Permuted MNIST Split CIFAR-100 Split miniImagenet

Methods t p t p t p

MCTS vs Random 2.72 0.044 3.67 0.007 2.48 0.054

MCTS vs A-GEM 8.40 0.001 7.60 0.000 19.52 0.000

MCTS vs ER-Ring 4.46 0.005 -2.96 0.018 0.99 0.369

MCTS vs Uniform 4.68 0.003 -1.13 0.296 0.23 0.824
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III.3 Varying Memory Size in Different Continual Learning
Setting

Here, we provide the ACC and BWT metrics from the varying memory size experi-
ments from figure 5 in Section 4.5. We also provide the p-values from Welch’s t-tests
to show the statistical significance between the methods.

� Domain-IL, 10-task Permuted MNIST: Metrics in Table 8, t-tests in Table
9.

� Task-IL, 5-task Split MNIST/FashionMNIST/notMNIST: Metrics in
Table 10, t-tests in Table 11.

� Task-IL, 20-task Split CIFAR-100/miniImagenet: Metrics in Table 12,
t-tests in Table 13.

� Class-IL, 5-task Split MNIST/FashionMNIST/notMNIST: Metrics in
Table 14, t-tests in Table 15.

� Class-IL, 20-task Split CIFAR-100/miniImagenet: Metrics in Table 16,
t-tests in Table 17.

We note that MCTS mostly performs significantly better than the baselines on the 10-
task Permuted MNIST and, interestingly, on the 20-task Split CIFAR-100 and Split
miniImagenet in both Task-IL and Clas-IL settings, which shows the importance of
replay scheduling for CL datasets with long task horizons.

Table 8: Performance comparison in the Do-
main Incremental Learning setting over var-
ious memory sizes for the methods on Per-
muted MNIST.

Permuted MNIST

Memory Size Method ACC (%) BWT (%)

M=90

Random 72.63 ± 1.06 -25.62 ± 1.20

ETS 71.49 ± 1.15 -26.92 ± 1.26

Heuristic 75.50 ± 1.64 -22.14 ± 1.93

MCTS 71.66 ± 0.67 -28.70 ± 0.81

M=270

Random 82.01 ± 0.79 -15.24 ± 0.86

ETS 80.68 ± 0.66 -16.72 ± 0.77

Heuristic 78.32 ± 1.58 -19.01 ± 1.83

MCTS 82.08 ± 0.35 -17.18 ± 0.38

M=450

Random 84.72 ± 1.39 -12.16 ± 1.53

ETS 84.38 ± 1.12 -12.54 ± 1.20

Heuristic 81.66 ± 2.30 -15.27 ± 2.48

MCTS 85.53 ± 0.42 -13.34 ± 0.49

M=900

Random 88.02 ± 1.03 -8.51 ± 1.09

ETS 88.02 ± 0.46 -8.52 ± 0.47

Heuristic 80.27 ± 3.26 -16.77 ± 3.76

MCTS 88.94 ± 0.43 -9.55 ± 0.47

M=2250

Random 90.94 ± 0.46 -5.26 ± 0.43

ETS 91.07 ± 0.23 -5.11 ± 0.21

Heuristic 81.28 ± 3.79 -15.68 ± 4.32

MCTS 92.45 ± 0.34 -5.63 ± 0.41

Table 9: Two-tailed Welch’s t-test results for
the varying memory size experiments pre-
sented in Table 8 in the Domain Incremental
Learning setting on Permuted MNIST.

Permuted MNIST

Memory Size Methods t p

M=90
MCTS vs Random -1.55 0.166

MCTS vs ETS 0.26 0.806

MCTS vs Heuristic -4.32 0.007

M=270
MCTS vs Random 0.17 0.872

MCTS vs ETS 3.75 0.009

MCTS vs Heuristic 4.66 0.008

M=450
MCTS vs Random 1.13 0.313

MCTS vs ETS 1.93 0.111

MCTS vs Heuristic 3.31 0.027

M=900
MCTS vs Random 1.66 0.153

MCTS vs ETS 2.92 0.019

MCTS vs Heuristic 5.28 0.006

M=2250
MCTS vs Random 5.31 0.001

MCTS vs ETS 6.74 0.000

MCTS vs Heuristic 5.88 0.004
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Table 10: Performance comparison in the Task Incremental Learning setting over various memory
sizes for the methods on the 5-task datasets.

Split MNIST Split FashionMNIST Split notMNIST

Memory Size Method ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

M=8

Random 95.50 ± 1.92 -5.38 ± 2.38 95.04 ± 2.43 -5.42 ± 3.06 91.36 ± 1.76 -6.15 ± 1.98

ETS 95.83 ± 1.23 -4.96 ± 1.53 97.25 ± 0.68 -2.66 ± 0.82 92.10 ± 1.53 -5.10 ± 1.97

Heuristic 96.16 ± 0.83 -4.45 ± 1.05 96.29 ± 0.79 -3.83 ± 1.05 93.68 ± 1.11 -3.06 ± 1.54

MCTS 98.17 ± 0.48 -1.99 ± 0.61 98.33 ± 0.11 -1.27 ± 0.11 94.53 ± 0.62 -1.67 ± 1.03

M=24

Random 97.21 ± 1.70 -3.24 ± 2.14 97.20 ± 0.71 -2.72 ± 0.92 92.31 ± 1.50 -4.88 ± 1.75

ETS 97.87 ± 0.58 -2.41 ± 0.74 97.84 ± 0.55 -1.91 ± 0.64 93.19 ± 1.41 -3.84 ± 1.48

Heuristic 97.82 ± 1.17 -2.40 ± 1.46 95.76 ± 2.84 -4.48 ± 3.52 92.97 ± 2.55 -3.54 ± 3.07

MCTS 98.58 ± 0.32 -1.47 ± 0.41 98.48 ± 0.24 -1.06 ± 0.32 95.23 ± 0.66 -1.08 ± 1.72

M=80

Random 97.57 ± 2.03 -2.78 ± 2.53 96.85 ± 1.58 -3.10 ± 2.05 94.14 ± 0.95 -2.50 ± 1.59

ETS 98.47 ± 0.40 -1.65 ± 0.49 97.93 ± 0.85 -1.76 ± 0.98 94.63 ± 0.67 -1.82 ± 0.74

Heuristic 98.36 ± 0.40 -1.72 ± 0.50 96.22 ± 1.96 -3.92 ± 2.45 93.24 ± 2.56 -3.73 ± 2.71

MCTS 99.06 ± 0.16 -0.89 ± 0.21 98.60 ± 0.24 -0.87 ± 0.34 94.84 ± 0.58 -0.97 ± 1.28

M=120

Random 97.82 ± 2.29 -2.47 ± 2.88 98.29 ± 0.44 -1.26 ± 0.56 94.91 ± 1.03 -1.65 ± 1.04

ETS 98.82 ± 0.18 -1.22 ± 0.26 98.53 ± 0.28 -0.96 ± 0.36 95.32 ± 0.66 -1.21 ± 1.30

Heuristic 98.37 ± 0.38 -1.71 ± 0.48 95.26 ± 3.14 -5.12 ± 3.98 93.42 ± 1.78 -3.47 ± 2.22

MCTS 99.05 ± 0.11 -0.88 ± 0.15 98.75 ± 0.19 -0.77 ± 0.25 94.16 ± 1.08 -1.99 ± 1.69

M=200

Random 97.99 ± 1.59 -2.25 ± 2.00 96.68 ± 3.33 -3.38 ± 4.19 93.94 ± 1.40 -2.12 ± 1.70

ETS 98.83 ± 0.23 -1.19 ± 0.28 98.60 ± 0.25 -0.99 ± 0.29 94.79 ± 0.50 -1.58 ± 1.03

Heuristic 98.15 ± 0.64 -1.97 ± 0.81 95.83 ± 2.00 -4.40 ± 2.52 93.88 ± 1.63 -2.71 ± 1.69

MCTS 99.09 ± 0.08 -0.83 ± 0.11 98.83 ± 0.11 -0.65 ± 0.15 95.19 ± 0.53 -0.49 ± 0.47

M=400

Random 97.98 ± 2.23 -2.28 ± 2.80 98.00 ± 1.59 -1.74 ± 2.00 94.68 ± 1.11 -1.77 ± 1.09

ETS 99.18 ± 0.10 -0.78 ± 0.13 98.83 ± 0.09 -0.71 ± 0.12 95.41 ± 0.56 -0.20 ± 1.07

Heuristic 98.44 ± 0.60 -1.64 ± 0.77 95.41 ± 3.77 -4.93 ± 4.69 92.84 ± 1.88 -3.95 ± 2.05

MCTS 99.25 ± 0.05 -0.63 ± 0.09 98.80 ± 0.11 -0.62 ± 0.17 95.25 ± 0.44 -0.97 ± 1.20

M=800

Random 98.60 ± 1.42 -1.51 ± 1.77 97.00 ± 3.93 -2.98 ± 4.94 94.97 ± 0.73 -1.86 ± 0.77

ETS 99.34 ± 0.06 -0.57 ± 0.04 98.97 ± 0.06 -0.51 ± 0.10 95.52 ± 0.74 -0.61 ± 1.21

Heuristic 98.76 ± 0.41 -1.23 ± 0.55 93.32 ± 3.67 -7.54 ± 4.65 95.06 ± 1.44 -1.17 ± 1.30

MCTS 99.38 ± 0.08 -0.45 ± 0.10 98.96 ± 0.12 -0.45 ± 0.18 95.46 ± 0.70 -0.48 ± 0.81

Table 11: Two-tailed Welch’s t-test results for the varying memory size experiments presented in
Table 10 in the Task Incremental Learning setting on the 5-task datasets.

Split MNIST Split FashionMNIST Split notMNIST

Memory size Methods t p t p t p

M=8
MCTS vs Random 2.70 0.048 2.70 0.054 3.41 0.019

MCTS vs ETS 3.53 0.016 3.13 0.033 2.94 0.030

MCTS vs Heuristic 4.18 0.005 5.12 0.006 1.34 0.227

M=24
MCTS vs Random 1.59 0.183 3.39 0.020 3.55 0.014

MCTS vs ETS 2.15 0.074 2.14 0.080 2.63 0.041

MCTS vs Heuristic 1.26 0.268 1.90 0.128 1.72 0.153

M=80
MCTS vs Random 1.47 0.215 2.18 0.091 1.26 0.251

MCTS vs ETS 2.76 0.038 1.53 0.191 0.48 0.645

MCTS vs Heuristic 3.26 0.021 2.41 0.072 1.22 0.285

M=120
MCTS vs Random 1.07 0.344 1.95 0.105 -1.01 0.343

MCTS vs ETS 2.12 0.073 1.31 0.231 -1.83 0.112

MCTS vs Heuristic 3.45 0.020 2.22 0.090 0.70 0.507

M=200
MCTS vs Random 1.38 0.240 1.29 0.266 1.67 0.154

MCTS vs ETS 2.06 0.094 1.69 0.146 1.11 0.301

MCTS vs Heuristic 2.91 0.042 3.00 0.040 1.53 0.190

M=400
MCTS vs Random 1.14 0.318 1.00 0.373 0.94 0.389

MCTS vs ETS 1.25 0.258 -0.42 0.684 -0.47 0.655

MCTS vs Heuristic 2.69 0.054 1.80 0.146 2.49 0.061

M=800
MCTS vs Random 1.10 0.332 1.00 0.373 0.96 0.364

MCTS vs ETS 0.82 0.435 -0.06 0.955 -0.11 0.912

MCTS vs Heuristic 3.05 0.035 3.08 0.037 0.50 0.636
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Table 12: Performance comparison in the Task Incremental Learning setting over various memory
sizes for the methods on the 20-task datasets.

Split CIFAR-100 Split miniImagenet

Memory Size Method ACC (%) BWT (%) ACC (%) BWT (%)

M=95

Random 56.92 ± 0.72 -31.98 ± 0.69 52.06 ± 0.94 -12.49 ± 1.41

ETS 55.19 ± 0.77 -33.70 ± 0.82 51.33 ± 2.01 -13.32 ± 2.15

Heuristic 53.86 ± 3.89 -34.51 ± 4.25 50.66 ± 1.36 -10.99 ± 1.39

MCTS 60.46 ± 1.05 -27.67 ± 1.23 53.59 ± 0.24 -9.49 ± 0.51

M=285

Random 67.79 ± 1.19 -20.31 ± 1.12 57.85 ± 1.09 -6.33 ± 1.30

ETS 65.02 ± 0.98 -23.36 ± 1.10 56.18 ± 0.83 -8.43 ± 1.37

Heuristic 60.26 ± 2.88 -27.44 ± 2.87 53.33 ± 2.21 -7.96 ± 2.18

MCTS 68.85 ± 0.56 -18.41 ± 0.63 57.91 ± 0.09 -5.18 ± 0.54

M=475

Random 70.86 ± 1.24 -17.19 ± 1.26 59.54 ± 1.25 -4.22 ± 1.96

ETS 69.40 ± 0.73 -18.68 ± 0.82 59.60 ± 0.98 -4.75 ± 1.31

Heuristic 65.00 ± 3.08 -22.58 ± 3.20 50.12 ± 4.60 -11.79 ± 5.08

MCTS 72.93 ± 0.54 -14.15 ± 0.78 60.00 ± 0.48 -2.85 ± 0.34

M=950

Random 75.39 ± 0.46 -12.24 ± 0.46 61.87 ± 0.85 -2.32 ± 1.06

ETS 74.24 ± 0.61 -13.49 ± 0.44 60.51 ± 0.95 -4.01 ± 1.28

Heuristic 65.97 ± 5.51 -21.40 ± 5.58 50.99 ± 4.64 -11.21 ± 4.62

MCTS 76.65 ± 0.62 -10.31 ± 0.84 61.82 ± 0.69 -1.38 ± 0.55

M=1900

Random 78.86 ± 0.38 -8.64 ± 0.37 62.95 ± 0.69 -1.56 ± 0.99

ETS 77.66 ± 0.38 -9.72 ± 0.36 62.38 ± 0.68 -1.55 ± 0.90

Heuristic 63.70 ± 6.12 -24.07 ± 6.60 56.42 ± 3.15 -5.43 ± 3.63

MCTS 79.24 ± 0.59 -7.43 ± 0.64 63.83 ± 1.04 0.41 ± 1.10

Table 13: Two-tailed Welch’s t-test results for the varying memory size experiments presented in
Table 12 in the Task Incremental Learning setting on the 20-task datasets.

Split CIFAR-100 Split miniImagenet

Memory size Methods t p t p

M=95
MCTS vs Random 5.56 0.001 3.15 0.029

MCTS vs ETS 8.11 0.000 2.23 0.088

MCTS vs Heuristic 3.27 0.025 4.24 0.012

M=285
MCTS vs Random 1.62 0.159 0.11 0.918

MCTS vs ETS 6.76 0.000 4.14 0.014

MCTS vs Heuristic 5.87 0.003 4.13 0.014

M=475
MCTS vs Random 3.05 0.025 0.68 0.525

MCTS vs ETS 7.78 0.000 0.73 0.496

MCTS vs Heuristic 5.07 0.006 4.28 0.012

M=950
MCTS vs Random 3.25 0.013 -0.09 0.929

MCTS vs ETS 5.51 0.001 2.25 0.058

MCTS vs Heuristic 3.85 0.017 4.62 0.009

M=1900
MCTS vs Random 1.08 0.317 1.41 0.203

MCTS vs ETS 4.53 0.003 2.34 0.052

MCTS vs Heuristic 5.05 0.007 4.47 0.007
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Table 14: Performance comparison in the Class Incremental Learning setting over various memory
sizes for the methods on the 5-task datasets.

Split MNIST Split FashionMNIST Split notMNIST

Memory Size Method ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

M=10

Random 25.53 ± 1.57 -92.74 ± 1.99 30.78 ± 2.74 -85.70 ± 3.47 30.48 ± 5.16 -81.80 ± 6.18

ETS 25.10 ± 1.04 -93.27 ± 1.32 30.67 ± 2.36 -85.83 ± 3.03 31.67 ± 6.03 -80.22 ± 7.36

Heuristic 25.05 ± 1.51 -93.27 ± 1.85 31.81 ± 3.17 -84.33 ± 3.96 29.86 ± 3.49 -82.07 ± 4.26

MCTS 28.19 ± 2.18 -89.34 ± 2.71 33.77 ± 2.71 -81.91 ± 3.45 37.23 ± 3.53 -73.93 ± 3.89

M=20

Random 34.13 ± 2.04 -81.98 ± 2.57 37.80 ± 2.92 -76.83 ± 3.62 42.78 ± 1.24 -65.75 ± 1.92

ETS 35.17 ± 2.06 -80.65 ± 2.54 38.76 ± 1.58 -75.63 ± 1.93 45.21 ± 5.92 -63.10 ± 7.33

Heuristic 33.87 ± 2.15 -82.20 ± 2.65 42.52 ± 1.98 -70.94 ± 2.47 45.13 ± 3.68 -63.32 ± 4.31

MCTS 39.62 ± 0.73 -75.05 ± 0.92 44.27 ± 2.19 -68.71 ± 2.74 47.83 ± 0.82 -59.91 ± 1.11

M=40

Random 45.34 ± 3.71 -67.96 ± 4.64 45.78 ± 2.96 -66.84 ± 3.72 55.70 ± 2.96 -49.58 ± 3.36

ETS 48.57 ± 1.90 -63.93 ± 2.37 45.54 ± 1.21 -67.15 ± 1.48 58.07 ± 3.88 -46.85 ± 4.92

Heuristic 45.22 ± 4.54 -68.05 ± 5.65 51.67 ± 1.59 -59.43 ± 2.02 53.90 ± 6.10 -52.09 ± 7.73

MCTS 50.79 ± 2.45 -61.07 ± 3.08 51.33 ± 2.96 -59.87 ± 3.70 62.55 ± 3.23 -41.20 ± 4.81

M=100

Random 59.53 ± 6.37 -50.12 ± 7.96 55.96 ± 3.31 -53.98 ± 4.17 65.06 ± 3.48 -37.86 ± 4.30

ETS 68.09 ± 1.06 -39.49 ± 1.33 59.26 ± 0.95 -49.92 ± 1.14 72.55 ± 1.65 -28.88 ± 2.31

Heuristic 49.81 ± 1.58 -62.17 ± 1.95 58.14 ± 2.96 -51.24 ± 3.71 58.28 ± 2.02 -46.70 ± 2.63

MCTS 66.86 ± 2.21 -40.96 ± 2.75 60.97 ± 2.43 -47.63 ± 2.99 71.18 ± 3.58 -30.27 ± 4.15

M=200

Random 65.82 ± 7.50 -42.27 ± 9.36 61.11 ± 5.19 -47.26 ± 6.48 67.07 ± 5.65 -35.36 ± 6.96

ETS 77.73 ± 1.31 -27.42 ± 1.63 66.51 ± 0.75 -40.60 ± 0.99 77.15 ± 0.24 -22.61 ± 0.89

Heuristic 53.85 ± 0.88 -57.05 ± 1.11 54.69 ± 0.32 -55.42 ± 0.43 57.05 ± 3.28 -47.66 ± 4.09

MCTS 78.14 ± 1.67 -26.81 ± 2.00 67.38 ± 2.60 -39.41 ± 3.26 75.91 ± 4.88 -24.15 ± 5.98

Table 15: Two-tailed Welch’s t-test results for the varying memory size experiments presented in
Table 14 in the Class Incremental Learning setting on the 5-task datasets.

Split MNIST Split FashionMNIST Split notMNIST

Memory size Methods t p t p t p

M=10
MCTS vs Random 1.98 0.086 1.56 0.158 2.16 0.067

MCTS vs ETS 2.56 0.045 1.73 0.123 1.59 0.159

MCTS vs Heuristic 2.37 0.049 0.94 0.374 2.97 0.018

M=20
MCTS vs Random 5.06 0.004 3.54 0.009 6.80 0.000

MCTS vs ETS 4.07 0.010 4.07 0.004 0.88 0.429

MCTS vs Heuristic 5.08 0.004 1.18 0.271 1.43 0.219

M=40
MCTS vs Random 2.45 0.044 2.65 0.029 3.13 0.014

MCTS vs ETS 1.43 0.192 3.62 0.014 1.78 0.115

MCTS vs Heuristic 2.16 0.073 -0.21 0.843 2.51 0.046

M=100
MCTS vs Random 2.18 0.082 2.44 0.043 2.45 0.040

MCTS vs ETS -1.00 0.356 1.31 0.246 -0.69 0.515

MCTS vs Heuristic 12.55 0.000 1.48 0.180 6.29 0.001

M=200
MCTS vs Random 3.21 0.029 2.16 0.075 2.37 0.046

MCTS vs ETS 0.39 0.707 0.65 0.548 -0.51 0.639

MCTS vs Heuristic 25.79 0.000 9.69 0.001 6.41 0.000
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Table 16: Performance comparison in the Class Incremental Learning setting over various memory
sizes for the methods on the 20-task datasets.

Split CIFAR-100 Split miniImagenet

Memory Size Method ACC (%) BWT (%) ACC (%) BWT (%)

M=100

Random 4.49 ± 0.04 -85.73 ± 0.34 3.36 ± 0.23 -60.11 ± 0.83

ETS 4.51 ± 0.13 -85.62 ± 0.34 3.34 ± 0.21 -60.25 ± 0.47

Heuristic 4.55 ± 0.13 -84.62 ± 0.44 3.29 ± 0.14 -57.01 ± 0.45

MCTS 4.62 ± 0.10 -84.73 ± 0.23 3.51 ± 0.19 -57.57 ± 1.13

M=200

Random 5.24 ± 0.12 -84.53 ± 0.28 3.60 ± 0.24 -58.83 ± 0.81

ETS 4.98 ± 0.14 -85.05 ± 0.19 3.75 ± 0.14 -58.92 ± 1.03

Heuristic 5.20 ± 0.16 -83.33 ± 0.29 3.95 ± 0.36 -54.81 ± 0.58

MCTS 5.84 ± 0.16 -82.89 ± 0.28 4.26 ± 0.19 -55.19 ± 0.73

M=400

Random 7.13 ± 0.25 -81.93 ± 0.29 4.81 ± 0.40 -56.36 ± 0.44

ETS 6.35 ± 0.25 -82.92 ± 0.23 4.35 ± 0.15 -57.28 ± 0.83

Heuristic 7.66 ± 0.60 -79.82 ± 0.60 6.97 ± 0.78 -49.44 ± 1.04

MCTS 8.31 ± 0.21 -79.58 ± 0.51 7.64 ± 0.70 -48.73 ± 1.71

M=800

Random 10.64 ± 0.51 -77.27 ± 0.62 8.40 ± 1.07 -50.95 ± 1.85

ETS 9.13 ± 0.20 -79.54 ± 0.43 7.15 ± 0.51 -53.95 ± 0.74

Heuristic 11.33 ± 0.47 -74.75 ± 0.73 8.44 ± 1.15 -48.89 ± 1.43

MCTS 12.06 ± 0.24 -74.70 ± 0.29 11.56 ± 1.30 -44.30 ± 1.63

M=1600

Random 15.54 ± 0.69 -70.42 ± 0.55 13.72 ± 1.30 -44.19 ± 1.73

ETS 13.99 ± 0.32 -72.42 ± 0.24 12.17 ± 1.40 -47.55 ± 1.39

Heuristic 15.66 ± 1.84 -67.24 ± 1.75 8.39 ± 1.35 -49.35 ± 1.77

MCTS 17.59 ± 0.42 -66.59 ± 0.66 15.40 ± 0.34 -42.27 ± 0.73

Table 17: Two-tailed Welch’s t-test results for the varying memory size experiments presented in
Table 16 in the Class Incremental Learning setting on the 20-task datasets.

Split CIFAR-100 Split miniImagenet

Memory size Methods t p t p

M=100
MCTS vs Random 2.35 0.065 1.03 0.335

MCTS vs ETS 1.38 0.208 1.20 0.266

MCTS vs Heuristic 0.87 0.410 1.86 0.103

M=200
MCTS vs Random 5.95 0.000 4.34 0.003

MCTS vs ETS 8.07 0.000 4.35 0.003

MCTS vs Heuristic 5.72 0.000 1.51 0.182

M=400
MCTS vs Random 7.15 0.000 7.06 0.000

MCTS vs ETS 11.98 0.000 9.22 0.000

MCTS vs Heuristic 2.01 0.101 1.29 0.232

M=800
MCTS vs Random 5.05 0.003 3.75 0.006

MCTS vs ETS 18.79 0.000 6.32 0.001

MCTS vs Heuristic 2.77 0.033 3.60 0.007

M=1600
MCTS vs Random 5.08 0.002 2.50 0.059

MCTS vs ETS 13.60 0.000 4.49 0.008

MCTS vs Heuristic 2.04 0.104 10.04 0.000
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Abstract

Scheduling over which tasks to select for replay at different times have been
demonstrated to be important in continual learning. However, a replay schedul-
ing policy that can be applied in any continual learning scenario is currently
missing, which makes replay scheduling infeasible in real-world scenarios. To
this end, we propose using reinforcement learning to enable learning policies
that can be applied in new continual learning scenarios without additional
computational cost. In our experiments, we show that the learned policies
can propose replay schedules that efficiently mitigate catastrophic forgetting
in environments with previously unseen task orders and datasets. The pro-
posed approach opens up for new research directions in replay-based continual
learning that stems well with real-world needs.

1 Introduction

Scheduling over which historical tasks to replay has been shown to mitigate catas-
trophic forgetting efficiently in continual learning (CL) [1, 2]. Such replay strategies
are important in real-world applications with machine learning systems that needs to
learn continuously from streaming data, wherein the incoming data is stored rather
than deleted. In such scenarios, re-training on all stored data is often prohibited
due to limitations on computational resources and data transmission times. There-
fore, we need a policy that schedules from immense amounts of recorded data which
previously learned abilities to replay when learning new tasks.

Although memory scheduling is essential for real-world CL, an efficient policy
that schedules the time to replay which tasks is currently missing from the literature.
For example, the policy in [2] is searched after using multiple CL episodes which is
prohibited in the CL setting. Moreover, the method in [1] performs forward passes on
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all stored data for selecting the tasks to replay, which becomes challenging in scenarios
where the amounts of historical data is huge. If we could learn the scheduling policy,
we would want the possibility to transfer the policy to new CL scenarios without
the need for additional training in the target domain. Ideally, the policy should be
domain-agnostic such that it is capable of generalizing to any CL dataset unseen
during training. Such policy could potentially enable replay methods to efficiently
mitigate catastrophic forgetting in real-world CL applications where the number of
seen classes exceeds the replay memory budget.

In this paper, we propose a framework based on reinforcement learning (RL) [3]
for learning a general replay scheduling policy that selects which tasks to replay at
different times. We focus on the CL setting introduced in [2] which simulates a
scenario where a replay memory is sampled from a large historical data storage for
mitigating catastrophic forgetting. The policy is learned from multiple episodes in a
CL environment by selecting which tasks to replay to efficiently mitigate catastrophic
forgetting in the CL network. Our goal is to learn a replay scheduling policy that
generalizes to new CL scenarios without added computational cost. We enable the
possibility for generalizing to new domains by using the intuition that the policy
should replay tasks that are to be forgotten by the classifier. Hence, we provide the
policy with the evaluated task performances of the classifier in the CL environment,
such that the policy can select the tasks to efficiently retain overall CL performance.
In summary, our contributions are:

� We take the first steps to enable replay scheduling in real-world CL scenarios by
proposing an RL-based framework for learning policies that generalize across
different CL environments (Section 4).

� We show that the learned policies can efficiently mitigate catastrophic forget-
ting in CL scenarios with new task orders and datasets unseen during training
without added computational cost (Section 5.1).

2 Preliminaries

In this section, we recall the CL setting in [2] that we consider as well as some
background on RL and the algorithms Deep Q-Networks (DQNs) [4, 5], Advantage
Actor-Critic (A2C) [6], and Soft Actor-Critic [7, 8].

2.1 Continual Learning Setting

We consider the CL setting presented in Klasson et al. [2]. In contrast to the tradi-
tional CL setting [9, 10], the historical data is assumed to be accessible at any time
for replay to mitigate catastrophic forgetting. However, retraining on all seen data
is prohibited due to processing time constraints, such as limitations on data trans-
mission times or the allowed time for learning new tasks. The learning setup is the
same as for CL in image classification, where a network parameterized by φ should
learn T tasks arriving sequentially in the form of T datasets D1:T = {D1, . . . ,DT }.
The dataset for the t-th task Dt = {(x(i)

t , y
(i)
t )}Nti=1 where x

(i)
t and y

(i)
t are the i-

th data point and corresponding class label among a total of Nt examples in the
dataset. Furthermore, each dataset is split into a training, validation, and test set,



2. PRELIMINARIES 171

i.e., Dt = {Dtraint ,Dvalt ,Dtestt }. The objective at task t is to minimize the loss
`(fφ(xt), yt) where `(·) is the cross-entropy loss in our case.

The challenge is for the network fφ to retain its performance on the previous
tasks. However, as the historical data can be huge, we are only allowed to fill a tiny
replay memory M of size M with historical data due to limitations on processing
time. Hence, we need a method for selecting which tasks to replay and the amount
of samples to add to the replay memory from each selected task. We use the same
approach as in [2] to enable the task selection, where a discrete action space of task
proportions is created. At each task t, there is a finite set possible task proportions
pt = (p1, . . . , pT−1), where

∑
j pj = 1 with pj ≥ 0 if j < t otherwise pj = 0, that can

be used for constructing the replay memory for mitigating catastrophic forgetting.
Replay scheduling involves finding a policy for selecting task proportions that are
efficient in mitigating catastrophic forgetting in the CL network. In Section 4, we
describe our RL-based framework for learning such policies.

2.2 Background on Reinforcement Learning

The RL setup considers an agent interacting with an environment E over a number
of discrete time steps [3]. The environment is modeled with a Markov Decision
Process (MDP) [11] represented as a tuple E = (S,A, P,R, µ, γ) consisting of the
state space S, action space A, state transition probability P (s′|s, a), reward function
R(s, a), initial state distribution µ(s1), and discount factor γ. At each time step t,
the agent receives a state st from the environment, selects an action at ∈ A using a
policy π(a|s), and enters the next state st+1 with transition probability P (st+1|st, at)
and receives a numerical reward following rt from the environment. This procedure
is repeated until the agent reaches a terminal state in which the procedure can be
restarted. The return Gt =

∑∞
k=0 γ

krt+k is the discounted accumulated reward from
time step t. The goal for the agent is to learns policy that maximizes the expected
return.

The action value Qπ(s, a) = E[Gt|st = s, a] is the expected return for selecting
action a in state s and following policy π. The optimal action value Q∗(s, a) =
maxπ Q

π(s, a) is defined as the maximum action value for state s and action a for any
given policy π. Deep Q-Networks (DQNs) [4,5] is a value-based RL algorithm which
aims to approximate the optimal action value function as Q∗(s, a) ≈ Qθ(s, a) with
a neural network Qθ parameterized by θ. For learning the function Qθ, we collect
data from the environment with by using an epsilon-greedy policy [3] to estimate Qθ
by minimizing the loss

LDQN(θ) = (yt −Qθ(st, at))
2 (1)

with yt = rt + γmaxa′ Qθ−(st+1, a
′), where θ− is a previous copy of the network θ

referred to as the target network. In addition to the introduction of target networks,
several methods have been proposed for stabilizing the learning process, such as using
experience replay [12] to sample training data stored in a replay buffer, applying L1-
smoothing to the loss, and correcting the action value estimates [13].

An alternative to value-based RL is policy gradient methods where the optimal
policy is estimated directly with a parameterized form πθ(a|s) where θ represents
the parameters of a neural network. Similar to the action value function, the value
function V π(s) = E[Gt|st = s] defines the expected return following policy π from
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state s. In actor critic methods, such as Advantage Actor-Critic (A2C) [6] and
Proximal Policy Optimization (PPO) [14], we estimate the value function with a
neural network Vθv to reduce variance of the gradients. The policy network takes
the state st as input and outputs a distribution over the possible actions at. The
agent collects experiences from the environment with the current policy to use for
updating the parameters θ by minimizing the loss

LPG(θ) = E[log πθ(a|s)Â(st, at)], (2)

where Âθv (st, at) is an estimate of the advantage function given by
∑k−1
i=0 = γiri +

γkVθv (st+k) − Vθv (st). The policy and value function can be updated after tmax
actions or when a terminal state is reached [6].

Model-free deep RL algorithms usually suffer from high sample complexity or
requires careful hyperparameter tuning. Soft Actor-Critic (SAC) [7,8] is a maximum
entropy RL algorithm that aims to maximize the expected reward and the entropy
of the policy, i.e.,

LSAC = E[R(st, at) + αH(π(·|st))], (3)
where α is a temperature parameter determining the relative importance of the en-
tropy against the reward. The goal for maximum entropy RL is to maximize the
reward while maintaining high entropy to encourage exploration of promising ac-
tions. SAC has been shown to learn faster than on-policy methods, such as PPO,
in tasks with high-dimensional continuous action spaces and being less sensitive to
hyperparameter selection [7].

3 Related Work

In this section, we place this paper into context by providing a brief overview of CL
as well as generalization in RL.

Continual Learning. The various CL approaches for mitigating catastrophic for-
getting can broadly be divided into three categories, namely, regularization-based [15–
21], architecture-based [22–28], and replay-based approaches [1,2,29–42]. Regularization-
based methods generally focuses on applying regularization techniques on parame-
ters important for recognizing old tasks and fit the remaining parameters to new
tasks [15, 17, 21, 43]. Furthermore, knowledge distillation [44] has been used for reg-
ularizing network output units of previous tasks [16, 18], as well as constraining the
parameter updates to subspaces with gradient projections to avoid interference with
previous tasks [19,20]. Architecture-based approaches focuses on adding task-specific
network modules for every seen task [22–24,27,28], or isolating parameters for predict-
ing specific task in fixed-size networks [25, 26, 45]. Replay-based methods re-trains
the network on samples of old tasks that are either stored in an external mem-
ory [1, 2, 29, 30, 34–38, 40, 41, 46], or synthesized with a generative model [32, 33, 42].
Scheduling over which samples or tasks to replay has been studied in [1,2]. This work
builds on the replay scheduling idea in [2] where we propose an RL-based framework
for learning policies that selects which tasks to replay at different times.

Generalization in Reinforcement Learning. Generalization is an active re-
search topic in RL [47] as RL agents tend to overfit to their training environ-
ments [48–51]. The goal is often to transfer learned policies to environments with new
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Figure 1: Illustration of the procedure of the proposed RL-based framework in a CL environment
with Split MNIST. The goal is to mitigate catastrophic forgetting in the classifier fφ by composing
replay memories M with the replay scheduling policy πθ . The policy selects action a determining
which tasks to replay given the state s represented as the validation task performances of fφ. The
colored border on the MNIST images indicates which task the data comes from. The classifier fφ
is in evaluation mode when darker-shaded color over the box is used.

tasks [52–55] and action spaces [56–58]. Some approaches aim to improve generaliza-
tion capabilities by generating more diverse training data [49, 59, 60], using network
regularization or inductive biases [61–63], or learning dynamics models [64, 65]. In
this paper, we use RL for learning policies for selecting which tasks a CL network
should replay. The goal is to learn policies that can be applied in new CL environ-
ments for replay scheduling on unseen task orders and datasets without additional
computational cost.

4 Methodology: Policy Learning Framework for Replay
Scheduling

In this section, we present an RL-based framework for learning replay scheduling
policies. We focus on learning a general policy that can be applied in any CL scenario
to mitigate catastrophic forgetting to avoid re-training the policy for every new CL
dataset. Our intuition is that there may exist general patterns regarding replay
scheduling, e.g., that tasks that are harder or have been forgotten should be replayed
more often. We aim to implicitly explore such task properties by using the task
performances of the CL network as states for the policy to select which tasks to
replay. Representing the states with task performances also enables transferring
the learned policy to reduce forgetting in unseen CL environments. For example,
we could apply a learned policy in user personalization scenarios, where an image
classifier learns continually to recognize various objects in environments of different
people. Next, we present our modeling approach for learning the replay scheduling
policies using RL.

CL Environment. We model the CL environments as Markov Decision Processes [11]
(MDPs) where each MDP is represented as a tuple Ei = (Si,A, Pi, Ri, µi, γ) con-
sisting of the state space Si, action space A, state transition probability Pi(s

′|s, a),
reward function Ri(s, a), initial state distribution µi(s1), and discount factor γ. Each
environment Ei contains a network fφ and task datasets D1:T where the t-th dataset
is learned at time step t. The state st is defined as the task accuracies At,1:t evaluated
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at task t, such that st = [At,1, ..., At,t, 0, ..., 0] where zero-padding is used on future
tasks. We obtain the states by evaluating the classifier on the validation datasets to
avoid overfitting the policy to the training data. We use the same action space as
constructed in Klasson et al. [2], such that at ∈ A corresponds to a task proportion pt
used for sampling the replay memoryMt. The state transition distribution Pi(s

′|s, a)
represents the dynamics of the environment, which depend on the initialization of fφ
and the task order in D1:T . We use a dense reward defined as the average validation

accuracies at task t, i.e., rt = 1
t

∑t
i=1A

(val)
t,i , to ease exploration in the action space.

The goal for the agent is to maximize the rewards during an episode.

Policy Training and Evaluation. Figure 1 shows an illustration of this proce-
dure for using the learned replay scheduling policy in a CL environment with the
Split MNIST dataset [43]. The seen CL datasets are placed in the dataset storage to
use for sampling replay memories given the actions from the policy πθ for mitigating
catastrophic forgetting at each time step. The policy interacts with the CL environ-
ments by selecting which tasks the network fφ should replay to mitigate catastrophic

forgetting. The state st is obtained by evaluating fφ on the validation sets D(val)
1:t af-

ter learning task t. The action at is selected under the policy πθ(a|st), parameterized
by θ, which is converted into the task proportion pt for sampling the replay mem-
ory Mt from the historical datasets. The network fφ is trained on task t + 1 while
replaying Mt, and we obtain the reward rt+1 and the next state st+1 by evaluating

fφ on the validation sets D(val)
1:t+1. The collected transitions (st, at, rt+1, st+1) are used

for updating the policy, and a new episode starts after fφ has learned the final task
T . We let the policy interact with multiple training environments E(train) = {Ei}Ki=1

sampled from a distribution of CL environments, i.e., Ei ∼ p(E). To generate diverse
CL environments, we let each Ei have different network initializations of fφ and task
orders in the datasets. Our goal is to learn a general replay scheduling policy that
can be applied in new CL environments to mitigate catastrophic forgetting. Hence,
in Section 5, we evaluate the policy in CL environments with new task orders or
datasets unseen during training. The policy is applied for only a single CL episode
without additional training in the test environment.

Architectures for RL algorithms. The input layer to the RL policy networks
has size T −1 where each unit is inputting the task performances since the states are

represented by the validation accuracies st = [A
(val)
t,1 , ..., A

(val)
t,t , 0, ..., 0]. The current

task can therefore be determined by the number of non-zero state inputs. For DQN
and A2C, we use a Categorical policy where the output layer has 35 units representing
the possible actions at T = 5 in the discrete action space (see Klasson et al. [2]). We
use action masking on the output units based on the task number to prevent the
network from selecting invalid actions for constructing the replay memory at the
current task. For SAC, we take inspiration from Tian et al. [66] and use a Dirichlet
policy for representing the task proportions in a continuous action space, where the
actions are constrained by

∑t−1
i=1 ai = 1 where ai ≥ 0. The continuous action space

has T − 1 dimensions, where each dimension represents the task proportion to use
for filling the replay memory with samples from the corresponding task. We use
zero-masking on the Dirichlet concentration parameters based on the current task to
prevent invalid actions. In the experiments (Section 5), we select the closest action
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measured in Euclidean distance from the discrete action space as the executed action
for SAC to establish fair comparison to DQN and A2C.

5 Experiments

We evaluate our RL-based framework using DQN, A2C, and SAC for learning poli-
cies that generalize to new CL scenarios. We show that the learned policies can
efficiently mitigate catastrophic forgetting in CL environments with new task orders
and datasets that are unseen during training. Full details on experimental settings
in Appendix II and additional results in III including statistical significance tests
between the RL algorithms and the baselines.

Datasets and Network Architectures. We conduct experiments on four CL
benchmark datasets: Split MNIST [43,67], FashionMNIST [68], Split notMNIST [69],
Permuted MNIST [70], and Split CIFAR-10 [71]. We randomly sample 15% of train-
ing data for each task to use for validation, and keep the original test sets intact.
We use multi-head output layers for all datasets and assume task labels are avail-
able at test time [72]. A 2-layer MLP with 256 hidden units for Split MNIST, Split
FashionMNIST, and Split notMNIST. For Split CIFAR-10, we the same ConvNet
architecture used in [18,21,73].

Generating CL Environments. We generate multiple CL environments with
pre-set random seeds for initializing the network parameters φ and shuffling the task
order. See Appendix II for details on the pre-set seeds. We shuffle the task order
by permuting the class order and then split the classes into 5 pairs (tasks) with 2
classes/pair. Taking a step at task t in the CL environments involves training the
CL network on the t-th dataset with a replay memory Mt from the discrete action
space [2]. To speed up the experiments with the RL algorithms, we run a breadth-
first search (BFS) through the discrete action space and save the classification results
for re-use during policy learning. Note that the action space has 1050 possible paths
of replay schedules for the 5-task datasets, which makes the environment generation
time-consuming. More specifically, generating a CL environment for one seed with
Split MNIST took on around 9.5 hours on average on a NVIDIA GeForce RTW
2080Ti. Hence, we only generate environments where the replay memory size M = 10
have been used, and leave analysis of different memory sizes as future work.

Baselines. We compare our proposed method to the following scheduling baselines:

� Random. Random policy that randomly selects task proportions from the
action space on how to structure the replay memory at every task.

� Equal Task Schedule (ETS). Policy that selects equal task proportion such
that the replay memory aims to fill the memory with an equal number of
samples from every seen task.

� Heuristic Global Drop (Heur-GD). Heuristic policy that replays tasks with
validation accuracy below a certain threshold proportional to the best achieved
validation accuracy on the task.
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Figure 2: Performance progress measured in ACC (%) for all methods in the 2 test environments
with (a) Split MNIST and (b) Split CIFAR-10 in the New Task Orders experiment. We plot the
performance progress for the RL algorithms for 100 evaluation steps equidistantly distributed over
the training episodes. The performance for the Random, ETS, and Heuristic scheduling baselines
are plotted as straight lines.

Table 1: Average ranking (lower is better) across methods in the policy generalization experiments.
The best and second-best ranks are colored in green and orange respectively.

New Task Order New Dataset

Method S-MNIST S-FashionMNIST S-notMNIST S-CIFAR-10 S-FashionMNIST S-notMNIST

Random 4.58 3.9 4.14 5.57 4.53 4.62

ETS 4.5 5.24 5.0 6.2 4.14 4.76

Heur-GD 5.07 4.91 3.74 4.63 3.26 5.31

Heur-LD 5.27 4.17 4.38 4.21 5.68 5.68

Heur-AT 4.92 4.6 6.28 3.89 4.21 4.97

DQN (Ours) 4.0 4.26 3.97 4.47 4.97 4.08

A2C (Ours) 3.56 5.23 3.84 3.21 4.76 3.38

SAC (Ours) 4.1 3.69 4.65 3.82 4.45 3.2

� Heuristic Local Drop (Heur-LD). Heuristic policy that replays tasks with
validation accuracy below a threshold proportional to the previous achieved
validation accuracy on the task.

� Heuristic Accuracy Threshold (Heur-AT). Heuristic policy that replays
tasks with validation accuracy below a fixed threshold.

The heuristics are based on the intuition that forgotten tasks should be replayed.
They fill the replay memory with M/k samples per task where k is the number of
selected tasks. If k = 0, then replay is skipped at the current task.

Evaluation Protocol. We use the average test accuracy over all tasks after learn-

ing the final task, i.e., ACC = 1
T

∑T
i=1A

(test)
T,i where A

(test)
T,i is the test accuracy of

task i after learning task T . To assess generalization capability, we use a ranking
method based on the ACC between the methods in every test environment for com-
parison (see Appendix II for more details). We average all results over 5 seeds for
the RL algorithms.

5.1 Policy Generalization to New Continual Learning Scenarios

In this section, we show that the policies learned with our RL-based framework using
DQN and A2C are capable of generalizing across CL environments with new task
orders and datasets unseen during training.



5. EXPERIMENTS 177

1 2 3 4 5

70

80

90

100

Task

A
c
c
u
ra

c
y

(%
)

T1 T2 T3 T4 T5

2 3 4 5

1
2
3
4

Current Task

R
e
p
la

y
e
d

T
a
sk

(a) A2C - ACC: 89.75%

1 2 3 4 5

70

80

90

100

Task

A
c
c
u
ra

c
y

(%
)

2 3 4 5

1
2
3
4

Current Task

R
e
p
la

y
e
d

T
a
sk

(b) ETS - ACC: 88.32%

Figure 3: Task accuracies and replay schedules from a single selected seed for A2C and ETS for a
Split CIFAR-10 environment.

Generalization to New Task Orders. We show that the learned replay schedul-
ing policies can generalize to CL environments with previously unseen task orders.
The training and test environments are generated with unique task orders of the CL
datasets. The columns New Task Order in Table 1 shows the average ranking for
the RL algorithms and the baselines when being applied in the 10 test environments.
Our learned policies obtain the best average ranking across most datasets, where
A2C performs mostly the best. Figure 2(a) and (b) shows the performance progress
for two test environments with Split MNIST and Split CIFAR-10 respectively (see
Figure 5 and 6 in Appendix III for all test environments). We observe that DQN
exhibits noisier progress of the achieved ACC in these test environments than A2C
and SAC. Furthermore, A2C improves more steadily over time than SAC.

To provide further insights, Figure 3 shows the task accuracy progress and the
corresponding replay schedule from A2C and ETS from one Split CIFAR-10 test
environment. in Figure 3. The replay schedules are visualized with bubble plots
showing the selected task proportion to use for composing the replay memories at
each task. In Figure 3a, we observe that A2C decides to replay task 2 more than
task 1 as the performance on task 2 decreases, which results in a slightly better ACC
metric achieved by A2C than ETS. These results show that the learned policy can
flexibly consider replaying forgotten tasks to enhance the CL performance.

Generalization to New Datasets. We show that the learned replay scheduling
policies are capable of generalizing to CL environments with new datasets unseen in
the training environments. We perform two sets of experiments:

1. train with environments generated with Split MNIST and FashionMNIST and
test on environments generated with Split notMNIST,

2. train with environments generated with Split MNIST and notMNIST and test
on environments generated with Split FashionMNIST.

The columns New Dataset in Table 1 shows the average ranking for the RL algo-
rithms and the baselines when we apply the replay schedules to test environments
with new datasets. We observe that both SAC and A2C performs best of all meth-
ods when generalizing to Split notMNIST compared to the baselines. However, the
learned RL policies have difficulties generalizing to Split FashionMNIST environ-
ments, which could be due to high variations in the state transition dynamics be-
tween training and test environments. This shows that learning the replay schedul-
ing policies using RL inherits common challenges with generalization in RL, such
as robustness to domain shifts. Potentially, the performance could be improved by
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Figure 4: Performance progress measured in ACC (%) for all methods in the 2 test environments with
(a) Split FashionMNIST and (b) Split notMNIST in the New Dataset experiment. We plot the
performance progress for the RL algorithms for 100 evaluation steps equidistantly distributed over
the training episodes. The performance for the Random, ETS, and Heuristic scheduling baselines
are plotted as straight lines.

generating more training environments for the agent to exhibit more variations of CL
scenarios, or by using other advanced RL methods which may generalize better [62].

To gain insights, we show the performance progress for two test environments with
Split FashionMNIST and Split notMNIST datasets in Figure 4(a) and (b) respectively
(see Figure 7 and 8 in Appendix III for all test environments). In Figure 4(a),
we observe that each RL algorithm has difficulties in converging to efficient replay
scheduling policies, where A2C even collapses to a suboptimal replay schedule in
second test environment (Seed 9). For the Split notMNIST environments in Figure
4(b), we observe that SAC achieves better ACC than DQN and A2C.

6 Conclusions

In this paper, we introduce an an RL-based framework for learning the time to learn
in a CL context. Building on the replay scheduling idea from [2], we are the first
to propose a method for learning policies that schedules which tasks to replay at
different times to improve memory retention of historical tasks. We showed that the
framework learns replay scheduling policies that can generalize across different CL
environments with unseen task orders and datasets without additional computational
cost or training in the test environment, which would be useful in user personalization
applications. Moreover, the learned policies are capable of considering replaying
forgotten tasks which can mitigate catastrophic forgetting more efficiently than fixed
scheduling policies. Our replay scheduling policy approach brings current research
closer to tackling real-world CL challenges where the number of tasks exceeds the
memory size.

Limitations and Future Work. Generalization in RL is a challenging research
topic by itself. With the current method, large amounts of diverse data and training
time is required to enable the learned policy to generalize well. This can be costly due
to generating the CL environments is expensive since each state transition involves
training the classifier on a CL task. Moreover, we mainly focused on a discrete action
space which is hard to construct especially when the number of tasks is large. Thus,
in future work, we would explore more advanced RL methods which can handle
continuous action spaces and generalize well.
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Supplementary Material

This supplementary material is structured as follows:

� Appendix I: Details on the methodology, such as construction of the action
space and the training procedure of the policy with RL.

� Appendix II: Details of the experimental settings on the CL and RL parts with
hyperparameter settings for CL networks and the RL algorithms. Moreover, we
provide details on the heuristic scheduling baselines used in the experiments,
as well as the ranking method used for assessing generalization capability.

� Appendix III: Additional experimental results with tables showing performance
metrics and ranks in every test environment, tables with Welch’s t-test for each
method, as well as figures showing the progress of ACC for the RL algorithms
in the test environments.

I Additional Methodology of RL Framework

We provide pseudo-code for the RL-based framework for learning the replay schedul-
ing policy in Algorithm 1. The procedure collects experience from all training en-
vironments in E(train) at every time step t. The datasets and classifiers are specific

for each environment Ei ∈ E(train). At t = 1, we obtain the initial state s
(i)
1 by eval-

uating the classifier on the validation set D(val)
1 after training the classifier on the

task 1. Next, we get the replay memory for mitigating catastrophic forgetting when

learning the next task t + 1 by 1) taking action a
(i)
t under policy πθ, 2) converting

action a
(i)
t into the task proportion pt, and 3) sampling the replay memoryMt from

the historical datasets given the selected proportion. We then obtain the reward rt
and the next state st+1 by evaluating the classifier on the validation sets D(val)

1:t+1 after
learning task t + 1. The collected experience from each time step is stored in the
experience buffer B. See the corresponding articles on DQN [4], A2C [6], and SAC [8]
for information on how the policy updates are performed.

II Experimental Settings

In this section, we describe the full details of the experimental settings used in this
paper. We first provide details on hyperparameter settings for the CL and RL parts,
including hyperparameters for DQN [4,5], A2C [6], and SAC [7] followed by descrip-
tion of the heuristic baselines, and the ranking method for assesing the generalization
capability of the learned policy.

Datasets. We generate CL environments with four datasets commonly used in the
CL literature. Split MNIST [43] is a variant of the MNIST [67] dataset where the
classes have been divided into 5 tasks incoming in the order 0/1, 2/3, 4/5, 6/7, and
8/9. Split FashionMNIST [68] is of similar size to MNIST and consists of grayscale
images of different clothes, where the classes have been divided into the 5 tasks T-
shirt/Trouser, Pullover/Dress, Coat/Sandals, Shirt/Sneaker, and Bag/Ankle boots.
Similar to MNIST, Split notMNIST [69] consists of 10 classes of the letters A-J with
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Algorithm 1 RL Framework for Learning Replay Scheduling Policy

Require: E(train): Training environments, θ: Policy parameters, γ: Discount factor
Require: η: Learning rate, nepisodes: Number of episodes, M : Replay memory size
1: B = {} . Initialize experience buffer
2: for i = 1, . . . , nepisodes do
3: for t = 1, . . . , T − 1 do
4: for Ei ∈ E(train) do
5: D1:t+1 = GetDatasets(Ei, t) . Get datasets from environment Ei

6: f
(i)
φ = GetClassifier(Ei) . Get classifier from environment Ei

7: if t == 1 then
8: Train(f

(i)
φ ,D(train)

t . Train classifier f
(i)
φ on task 1

9: A
(val)
1:t = Eval(f

(i)
φ ,D(val)

1:t ) . Evaluate classifier f
(i)
φ on task 1

10: s
(i)
t = A

(val)
1:t = [A

(val)
1,1 , 0, ..., 0] . Get initial state

11: end if
12: a

(i)
t ∼ πθ(a, s

(i)
t ) . Take action under policy πθ

13: pt = GetTaskProportion(a
(i)
t )

14: Mt ∼ GetReplayMemory(D(train)
1:t ,pt,M)

15: Train(f
(i)
φ ,D(train)

t+1 ∪Mt) . Train classifier f
(i)
φ

16: A
(val)
1:t+1 = Eval(f

(i)
φ ,D(val)

1:t+1) . Evaluate classifier f
(i)
φ

17: s
(i)
t+1 = A

(val)
1:t+1 = [A

(val)
t+1,1, ..., A

(val)
t+1,t+1, 0, ..., 0] . Get next state

18: r
(i)
t = 1

t+1

∑t+1
j=1 A

(val)
1:t+1 . Compute reward

19: B = B ∪ {(s(i)t , a
(i)
t , r

(i)
t , s

(i)
t+1)} . Store transition in buffer

20: if time to update policy then
21: θ,B = UpdatePolicy(θ,B, γ, η) . Update policy with experience
22: end if
23: end for
24: end for
25: end for
26: return θ . Return policy

various fonts, where the classes are divided into the 5 tasks A/B, C/D, E/F, G/H,
and I/J. We use training/test split provided by [22] for Split notMNIST. In Split
CIFAR-10 [71], the 10 classes are divided into 5 tasks with 2 classes for each task.

CL Network Architectures. We use a 2-layer MLP with 256 hidden units and
ReLU activation for Split MNIST, Split FashionMNIST, and Split notMNIST. For
Split CIFAR-10, we use the ConvNet architecture used in [18,21,73], which consists
of four 3x3 convolutional blocks, i.e. convolutional layer followed by batch nor-
malization [74], with 64 filters, ReLU activations, and 2x2 Max-pooling. We use a
multi-head output layer for each dataset and assume task labels are available at test
time for selecting the correct output head related to the task.

CL Hyperparameters. We train all networks with the Adam optimizer [75] with
learning rate η = 0.001 and hyperparameters β1 = 0.9 and β2 = 0.999. Note that
the learning rate for Adam is not reset before training on a new task. Next, we give
details on number of training epochs and batch sizes specific for each dataset:

� Split MNIST: 10 epochs/task, batch size 128.
� Split FashionMNIST: 10 epochs/task, batch size 128.
� Split notMNIST: 20 epochs/task, batch size 128.
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� Split CIFAR-100: 20 epochs/task, batch size 256.

Generating CL Environments. We generate multiple CL environments with
pre-set random seeds for initializing the network parameters φ and shuffling the
task order. The pre-set random seeds are in the range 0− 49, such that we have 50
environments for each dataset. We shuffle the task order by permuting the class order
and then split the classes into 5 pairs (tasks) with 2 classes/pair. For environments
with seed 0, we keep the original task order in the dataset. Taking a step at task t
in the CL environments involves training the CL network on the t-th dataset with
a replay memory Mt from the discrete action space. Therefore, to speed up the
experiments with the RL algorithms, we run a breadth-first search (BFS) through
the discrete action space and save the classification results for re-use during policy
learning. Note that the action space has 1050 possible paths of replay schedules
for the datasets with T = 5 tasks, which makes the environment generation time-
consuming. Hence, we only generate environments where the replay memory size
M = 10 have been used, and leave analysis of different memory sizes as future work.
The CL environments that we used will be provided in the public code.

Computational Cost. All experiments were performed on one NVIDIA GeForce
RTW 2080Ti on an internal GPU cluster. Generating a CL environment for one
seed with Split MNIST took on around 9.5 hours averaged over 10 runs of BFS.
Similarly for Split CIFAR-10, generating one CL environment took on average 16.1
hours. Note that BFS runs 1050 iterations in total for all 5-task datasets. The wall
clock time for ETS on Split MNIST was around 1.5 minutes.

Table 2 shows a time-cost ablation experiment w/ or w/o a DQN for selecting
which tasks to replay in Split MNIST. We measured the wall clock time for training
and evaluating the CL model on the 5 Split MNIST tasks w/ and w/o the DQN, and
show the wall clock time averaged over 10 different DQN seeds. The time difference
when w/ DQN is only 3.2 seconds, since selecting which tasks to replay is only a
forward pass with the RL policy.

Table 2: Time-cost ablation experiment w/ or w/o a DQN for replay scheduling on Split MNIST.

Time Cost With DQN Without DQN Difference

Avg. Time (in sec) 84.6 81.4 +3.2

RL Architectures. The input layer has size T − 1 where each unit is inputting
the task performances since the states are represented by the validation accuracies

st = [A
(val)
t,1 , ..., A

(val)
t,t , 0, ..., 0]. The current task can therefore be determined by the

number of non-zero state inputs. The output layer has 35 units representing the
possible actions at T = 5 with the discrete action space from Klasson et al. [2].
For DQN and A2C, we use a Categorical policy with action masking on the output
units to prevent the network from selection invalid actions for constructing the replay
memory at the current task. The DQN is a 2-layer MLP with 512 hidden units and
ReLU activations. For A2C, we use separate networks for parameterizing the policy
and the value function, where both networks are 2-layer MLPs with 64 hidden units
and Tanh activations. For SAC, we use a Dirichlet policy which uses masking to pre-
vent selecting action values along the invalid dimensions. We clamp the logarithmic
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output values of the policy network between [−20, 2] to stabilize learning the concen-
tration parameters of the Dirichlet distribution, and we ensure that the parameters
are > 1. The policy and value networks are 2-layer MLPs with 256 hidden units and
ReLU activations.

RL Hyperparameters. We provide the hyperparameters for DQN, A2C, and SAC
in Table 3, 4, and 5 respectively. Regarding the training environments in the tables
for the New Datasets experiment, we use two different datasets in the training
environments to increase the diversity. When Spit notMNIST is for testing, half
the amount of training environments are using Split MNIST and the other half uses
Split FashionMNIST. For example, in Table 4b, A2C uses 10 training environments
which means that there are 5 Split MNIST environments and 5 Split FashionMNIST
environments when the testing environments uses Split notMNIST. Similarly, half
the amount of training environments are using Split MNIST and the other half uses
Split notMNIST when the testing environments uses Split FashionMNIST.

Implementations. The code for DQN was adapted from OpenAI baselines [76]
and the PyTorch [77] tutorial on DQN https://pytorch.org/tutorials/intermediate/

reinforcement q learning.html. For A2C, we followed the implementations released
by Kostrikov [78] and Igl et al. [79]. For SAC, we adapt the implementation from
Ball and Roberts [80].

Table 3: DQN hyperparameters for the experiments on (a) New Task Orders and (b) New
Datasets in Section 5.1. (a) shows have differing values between datasets placed within {·} with the
order Split MNIST, Split FashionMNIST, Split notMNIST, and Split CIFAR-10. Hyperparameter
values in (b) are the same for both Split FashionMNIST and Split notMNIST.

(a) New Task Orders.

Hyperparameters Values

Training Environments {30, 20, 30, 10}
Learning Rate {0.0001, 0.0003, 0.0001, 0.0003}
Optimizer Adam

Buffer Size 10k

Target Update per step 500

Batch Size 32

Discount Factor γ 1.0

Exploration Start εstart 1.0

Exploration Final εfinal 0.02

Exploration Annealing (episodes) 2.5k

Training Episodes 10k

(b) New Dataset.

Hyperparameters Values

Training Environments 30

Learning Rate 0.0001

Optimizer Adam

Buffer Size 10k

Target Update per step 500

Batch Size 32

Discount Factor γ 1.0

Exploration Start εstart 1.0

Exploration Final εfinal 0.02

Exploration Annealing (episodes) 2.5k

Training Episodes 10k

https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
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Table 4: A2C hyperparameters for the experiments on (a) New Task Orders and (b) New
Datasets in Section 5.1. Both (a) and (b) shows have differing values between datasets placed
within {·}, with the order Split MNIST, Split FashionMNIST, Split notMNIST, and Split CIFAR-
10 for (a), and the order Split FashionMNIST and Split notMNIST for (b).

(a) New Task Orders.

Hyperparameters Values

Training Environments 10

Learning Rate {0.0001, 0.0003, 0.0001, 0.0003}
Optimizer RMSProp

Gradient Clipping 0.5

GAE parameter λ 0.95

VF coefficient 0.5

Entropy coefficient 0.01

Number of steps nsteps 5

Discount Factor γ 1.0

Training Episodes 100k

(b) New Dataset.

Hyperparameters Values

Training Environments 10

Learning Rate {0.0003, 0.0001}
Optimizer RMSProp

Gradient Clipping 0.5

GAE parameter λ 0.95

VF coefficient 0.5

Entropy coefficient 0.01

Number of steps nsteps 5

Discount Factor γ 1.0

Training Episodes 100k

Table 5: SAC hyperparameters for the experiments on (a) New Task Orders and (b) New
Datasets in Section 5.1. Both (a) and (b) shows have differing values between datasets placed
within {·}, with the order Split MNIST, Split FashionMNIST, Split notMNIST, and Split CIFAR-
10 for (a), and the order Split FashionMNIST and Split notMNIST for (b).

(a) New Task Orders.

Hyperparameters Values

Training Environments 10

Learning Rate {0.0003, 0.0003, 0.0001, 0.0001}
Optimizer Adam

Buffer Size 100k

Batch Size 256

Target Entropy -dim(A) (i.e. T − 1 = 4)

Target Smoothing Coefficient τ 0.005

Target Update Interval 1

Gradient Steps 1

Gradient Clipping 0.5

Discount Factor γ 1.0

Training Episodes 20k

(b) New Dataset.

Hyperparameters Values

Training Environments 10

Learning Rate {0.0003, 0.0001}
Optimizer Adam

Buffer Size 100k

Batch Size 256

Target Entropy -dim(A) (i.e. T − 1 = 4)

Target Smoothing Coefficient τ 0.005

Target Update Interval 1

Gradient Steps 1

Gradient Clipping 0.5

Discount Factor γ 1.0

Training Episodes 20k
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Heuristic Scheduling Baselines

We implemented three heuristic scheduling baselines to compare against our proposed
methods. These heuristics are based on the intuition of re-learning tasks when they
have been forgotten. We keep a validation set for each task to determine whether any
task should be replayed by comparing the validation accuracy against a hand-tuned
threshold. If the validation accuracy is below the threshold, then the corresponding

task is replayed. Let A
(val)
t,i be the validation accuracy for task t evaluated at time

step i. The threshold is set differently in each of the baselines:

� Heuristic Global Drop (Heur-GD). Heuristic policy that replays tasks with
validation accuracy below a certain threshold proportional to the best achieved
validation accuracy on the task. The best achieved validation accuracy for

task i is given by A
(best)
t,i = max{(A(val)

1,i , . . . , A
(val)
t,i )}. Task i is replayed if

A
(val)
t,i < τA

(best)
t,i where τ ∈ [0, 1] is a ratio representing the degree of how

much the validation accuracy of a task is allowed to drop.
� Heuristic Local Drop (Heur-LD). Heuristic policy that replays tasks with

validation accuracy below a threshold proportional to the previous achieved

validation accuracy on the task. Task i is replayed if A
(val)
t,i < τA

(val)
t−1,i where

tau again represents the degree of how much the validation accuracy of a task
is allowed to drop.

� Heuristic Accuracy Threshold (Heur-AT). Heuristic policy that replays
tasks with validation accuracy below a fixed threshold. Task i is replayed if if

A
(val)
t,i < τ where τ ∈ [0, 1] represents the least tolerated accuracy before we

need to replay the task.

The replay memory is filled with M/k samples from each selected task, where k is
the number of tasks that need to be replayed according to their decrease in validation
accuracy. We skip replaying any tasks if no tasks are selected for replay, i.e., k = 0.

Grid search for τ . We performed a grid search for the parameter τ for the three
heuristic scheduling baselines for each experiment to compare against the learned re-
play scheduling policies. The validation set consists of 15% of the training data and
is identical to the validation set used for learning the RL policies. We select the pa-
rameter based on ACC scores achieved in the same number of training environments
used by either DQN or A2C. The search range we use is τ ∈ {0.90, 0.95, 0.999}. In
Table 6, we show the selected parameter value of τ and the number of environments
used for selecting the value for each method and experiment in Section 5.1. The same
parameters are used to generate the results on the heuristics in Table 1.

Table 6: The threshold parameter τ used in the heuristic scheudling baselines Heuristic Global Drop
(Heur-GD), Heuristic Local Drop (Heur-LD), and Heuristic Accuracy Threshold (Heur-AT). The
search range is τ ∈ {0.90, 0.95, 0.999} for all methods and we display the number of environments
used for selecting the parameter used at test time.

New Task Order New Dataset

S-MNIST S-FashionMNIST S-notMNIST S-CIFAR-10 S-notMNIST S-FashionMNIST

Method τ #Envs τ #Envs τ #Envs τ #Envs τ #Envs τ #Envs

Heur-GD 0.9 10 0.95 20 0.999 10 0.9 10 0.9 10 0.9 10

Heur-LD 0.9 10 0.999 20 0.999 10 0.999 10 0.95 10 0.999 10

Heur-AT 0.9 10 0.999 20 0.999 10 0.9 10 0.9 10 0.95 10
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Assessing Generalization with Ranking Method

We use a ranking method based on the CL performance in every test environment
for performance comparison between the methods in Section 5.1. We use rankings
because the performances can vary greatly between environments with different task
orders and datasets. To measure the CL performance in the environments, we use
the average test accuracy over all tasks after learning the final task, i.e.,

ACC =
1

T

T∑
i=1

A
(test)
T,i ,

where A
(test)
t,i is the test accuracy of task i after learning task t. Each method are

ranked in descending order based on the ACC achieved in an environment. For
example, assume that we want to compare the CL performance from using learned
replay scheduling policies with DQN and A2C against a Random scheduling policy
in one environment. The CL performances achieved for each method are given by

[ACCRandom,ACCDQN,ACCA2C] = [90%, 99%, 95%].

We get the following ranking order between the methods based on their corre-
sponding ACC:

ranking([ACCRandom,ACCDQN,ACCA2C]) = [3, 1, 2],

where DQN is ranked in 1st place, A2C in 2nd, and Random in 3rd. When there
are multiple environments for evaluation, we compute the average ranking across the
ranking positions in every environment for each method to compare.

The average ranking for DQN and A2C are computed over the seed for initial-
izing the network parameters as well as the seed of the environment. Similarly, the
Random baseline is affected by the seed setting the random selection of actions and
the environment seed. However, the performance of the ETS and Heuristic baselines
are affected by the seed of the environment as these policies are fixed. We use copied
values of the performance in environments for the ETS and Heuristic baselines when
we need to compare across different random seeds for Random, DQN, and A2C. We
show an example of such ranking calculation for ETS, a Heuristic baseline, DQN,
and A2C. Consider the following performances for one environment:[

ACC1
ETS ACC1

Heur ACC1
DQN ACC1

A2C

ACC2
ETS ACC2

Heur ACC2
DQN ACC2

A2C

]
=

[
90% 95% 95% 99%

∗ ∗ 97% 98%

]
,

where ∗ denotes a copy of the ACC value in the first row. The subscript on
ACC denotes the method and the superscript the seed used for initializing the policy
network θ. Therefore, we copy the values for ETS and Heur such that the ACC2

DQN

for seed 2 can be compared against ETS and Heur. Note that there is a tie between
ACC1

Heur and ACC1
DQN as they have ACC 95%. We handle ties by assigning tied

methods the average of their ranks, such that the ranks for both seeds will be
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ranking

([
ACC1

ETS ACC1
Heur ACC1

DQN ACC1
A2C

ACC2
ETS ACC2

Heur ACC2
DQN ACC2

A2C

]
, axis=-1, keepdim=True

)

=ranking

([
90% 95% 95% 99%

90% 95% 97% 98%

]
, axis=-1, keepdim=True

)

=

[
4 2.5 2.5 1

4 3 2 1

]
,

where we inserted the copied values, such that ACC1
ETS = ACC2

ETS = 90% and
ACC1

Heur = ACC2
Heur = 95%. The mean ranking across the seeds thus becomes

mean

([
4 2.5 2.5 1

4 3 2 1

]
, axis=0

)
=
[
4 2.75 2.25 1

]
where A2C comes in 1st place, DQN in 2nd, Heur. in 3rd, and ETS on 4th place.

We average across seeds and environments to obtain the final ranking score for each
method for comparison.

Task Splits in Test Environments in Policy Generalization
Experiments

Here, we provide the task splits of the test environments used in the policy generaliza-
tion experiments in Section 5.1. We evaluated all methods using 10 test environments
in all experiments. The test environments in the New Task Order experiments were
generated with seeds 10-19. We show the task splits for the Split MNIST, Split Fash-
ionMNIST, and Split CIFAR-10 environments in Table 7, 9, and 10 respectively. The
test environments in the New Dataset experiments were generated with seeds 0-9. We
show the task splits for the Split notMNIST and Split FashionMNIST environments
in Table 8 and 11 respectively.

Table 7: Task splits with their corresponding
seed for test environments of Split MNIST
datasets in the New Task Orders experi-
ments in Section 5.1.

Seed Task 1 Task 2 Task 3 Task 4 Task 5

10 8, 2 5, 6 3, 1 0, 7 4, 9

11 7, 8 2, 6 4, 5 1, 3 0, 9

12 5, 8 7, 0 4, 9 3, 2 1, 6

13 3, 5 6, 1 4, 7 8, 9 0, 2

14 3, 9 0, 5 4, 2 1, 7 6, 8

15 2, 6 1, 3 7, 0 9, 4 5, 8

16 6, 2 0, 7 8, 4 3, 1 5, 9

17 7, 2 5, 3 4, 0 9, 8 6, 1

18 7, 9 0, 4 2, 1 6, 5 8, 3

19 1, 7 9, 6 8, 4 3, 0 2, 5

Table 8: Task splits with their corresponding
seed for test environments of Split notMNIST
datasets in the New Dataset experiments in
Section 5.1.

Seed Task 1 Task 2 Task 3 Task 4 Task 5

0 A, B C, D E, F G, H I, J

1 C, J G, E A, D B, H I, F

2 E, B F, A H, C D, G J, I

3 F, E B, C J, G H, A D, I

4 D, I E, J C, G A, B F, H

5 J, F C, E H, B A, I G, D

6 I, B H, A G, F C, E D, J

7 I, F A, C B, J H, D G, E

8 I, G J, A C, F H, B E, D

9 I, E H, C B, J D, A G, F
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Table 9: Task splits with their corresponding seed for test environments of Split FashionMNIST
datasets in the New Task Orders experiments in Section 5.1.

Seed Task 1 Task 2 Task 3 Task 4 Task 5

10 Bag, Pullover Sandal, Shirt Dress, Trouser T-shirt/top, Sneaker Coat, Ankle boot

11 Sneaker, Bag Pullover, Shirt Coat, Sandal Trouser, Dress T-shirt/top, Ankle boot

12 Sandal, Bag Sneaker, T-shirt/top Coat, Ankle boot Dress, Pullover Trouser, Shirt

13 Dress, Sandal Shirt, Trouser Coat, Sneaker Bag, Ankle boot T-shirt/top, Pullover

14 Dress, Ankle boot T-shirt/top, Sandal Coat, Pullover Trouser, Sneaker Shirt, Bag

15 Pullover, Shirt Trouser, Dress Sneaker, T-shirt/top Ankle boot, Coat Sandal, Bag

16 Shirt, Pullover T-shirt/top, Sneaker Bag, Coat Dress, Trouser Sandal, Ankle boot

17 Sneaker, Pullover Sandal, Dress Coat, T-shirt/top Ankle boot, Bag Shirt, Trouser

18 Sneaker, Ankle boot T-shirt/top, Coat Pullover, Trouser Shirt, Sandal Bag, Dress

19 Trouser, Sneaker Ankle boot, Shirt Bag, Coat Dress, T-shirt/top Pullover, Sandal

Table 10: Task splits with their corresponding seed for test environments of Split CIFAR-10 datasets
in the New Task Orders experiments in Section 5.1.

Seed Task 1 Task 2 Task 3 Task 4 Task 5

10 Ship, Bird Dog, Frog Cat, Automobile Airplane, Horse Deer, Truck

11 Horse, Ship Bird, Frog Deer, Dog Automobile, Cat Airplane, Truck

12 Dog, Ship Horse, Airplane Deer, Truck Cat, Bird Automobile, Frog

13 Cat, Dog Frog, Automobile Deer, Horse Ship, Truck Airplane, Bird

14 Cat, Truck Airplane, Dog Deer, Bird Automobile, Horse Frog, Ship

15 Bird, Frog Automobile, Cat Horse, Airplane Truck, Deer Dog, Ship

16 Frog, Bird Airplane, Horse Ship, Deer Cat, Automobile Dog, Truck

17 Horse, Bird Dog, Cat Deer, Airplane Truck, Ship Frog, Automobile

18 Horse, Truck Airplane, Deer Bird, Automobile Frog, Dog Ship, Cat

19 Automobile, Horse Truck, Frog Ship, Deer Cat, Airplane Bird, Dog

Table 11: Task splits with their corresponding seed for test environments of Split FashionMNIST
datasets in the New Dataset experiments in Section 5.1.

Seed Task 1 Task 2 Task 3 Task 4 Task 5

0 T-shirt/top, Trouser Pullover, Dress Coat, Sandal Shirt, Sneaker Bag, Ankle boot

1 Pullover, Ankle boot Shirt, Coat T-shirt/top, Dress Trouser, Sneaker Bag, Sandal

2 Coat, Trouser Sandal, T-shirt/top Sneaker, Pullover Dress, Shirt Ankle boot, Bag

3 Sandal, Coat Trouser, Pullover Ankle boot, Shirt Sneaker, T-shirt/top Dress, Bag

4 Dress, Bag Coat, Ankle boot Pullover, Shirt T-shirt/top, Trouser Sandal, Sneaker

5 Ankle boot, Sandal Pullover, Coat Sneaker, Trouser T-shirt/top, Bag Shirt, Dress

6 Bag, Trouser Sneaker, T-shirt/top Shirt, Sandal Pullover, Coat Dress, Ankle boot

7 Bag, Sandal T-shirt/top, Pullover Trouser, Ankle boot Sneaker, Dress Shirt, Coat

8 Bag, Shirt Ankle boot, T-shirt/top Pullover, Sandal Sneaker, Trouser Coat, Dress

9 Bag, Coat Sneaker, Pullover Trouser, Ankle boot Dress, T-shirt/top Shirt, Sandal
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III Additional Experimental Results

Here, we provide complementary results for the policy generalization experiments in
Section 5.1. We provide the ACC and BWT metrics for each method averaged across
5 seeds and the average rank in every test environment. Note that the ACC and BWT
from ETS and the heuristic scheduling baselines have standard deviation zero since
these policies are fixed. Averaging the ranks over all test environments yields the
corresponding average rank in Table 1. Furthermore, we provide the p-values from
Welch’s t-test to show whether the statistical significance of the results.

� New Task Order, Split MNIST: Metrics in Table 12, and Welch’s t-test in
Table 13.

� New Task Order, Split FashionMNIST: Metrics in Table 14, and Welch’s
t-test in Table 15.

� New Task Order, Split notMNIST: Metrics in Table 16, and Welch’s t-test
in Table 17.

� New Task Order, Split CIFAR-10: Metrics in Table 18, and Welch’s t-test
in Table 19.

� New Dataset, Split FashionMNIST: Metrics in Table 20, and Welch’s t-
test in Table 21.

� New Dataset, Split notMNIST: Metrics in Table 22, and Welch’s t-test in
Table 23.

The improvement with the learned replay scheduling policies is occasionally signif-
icant, however, such behavior is common when RL is used for generalizing to new
environments.

Figure 5-8 shows the performance progress measured in ACC in the test environ-
ments during training for the RL algorithms. We also show the ACC achieved by
the scheduling baselines as straight lines since these policies are fixed. Figure 5 and
6 shows the performance progress for test environments with Split MNIST and Split
CIFAR-10 respectively in the New Task Orders experiment. Figure 8 and 7 shows
the performance progress for test environments with Split notMNIST and Split Fash-
ionMNIST respectively in the New Dataset experiment. In general, we observe that
DQN exhibits noisier progress of the achieved ACC in the test environments than
A2C and SAC.
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Table 12: Performance comparison in every test environment with seed (10-19) with with Split
MNIST for New Task Order experiment. Under each column named ’Test Env. Seed X’, we
show the mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for the
corresponding method.

Test Env. Seed 10 Test Env. Seed 11

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.95 ± 2.68 -6.95 ± 3.33 4.8 92.13 ± 1.34 -9.46 ± 1.68 5.6

ETS 89.89 ± 0.00 -12.01 ± 0.00 7.8 93.77 ± 0.00 -7.41 ± 0.00 3.8

Heur-GD 94.64 ± 0.00 -6.06 ± 0.00 5.1 91.34 ± 0.00 -10.47 ± 0.00 6.6

Heur-LD 95.63 ± 0.00 -4.80 ± 0.00 2 91.34 ± 0.00 -10.47 ± 0.00 6.6

Heur-AT 94.64 ± 0.00 -6.06 ± 0.00 5.1 91.34 ± 0.00 -10.47 ± 0.00 6.6

DQN 94.68 ± 1.16 -6.00 ± 1.44 3.6 94.08 ± 1.75 -7.01 ± 2.19 3.6

A2C 95.31 ± 0.00 -5.21 ± 0.00 3.2 96.41 ± 0.18 -4.09 ± 0.23 1

SAC 94.80 ± 1.01 -5.84 ± 1.24 4.4 95.81 ± 0.40 -4.85 ± 0.50 2.2

Test Env. Seed 12 Test Env. Seed 13

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 92.22 ± 2.35 -9.16 ± 2.93 4.8 93.65 ± 2.06 -7.47 ± 2.58 5.4

ETS 91.69 ± 0.00 -9.82 ± 0.00 7.4 94.95 ± 0.00 -5.88 ± 0.00 3.2

Heur-GD 94.82 ± 0.00 -5.89 ± 0.00 1.7 94.66 ± 0.00 -6.14 ± 0.00 5.3

Heur-LD 91.93 ± 0.00 -9.50 ± 0.00 6.4 93.17 ± 0.00 -8.00 ± 0.00 7.4

Heur-AT 94.82 ± 0.00 -5.89 ± 0.00 1.7 94.66 ± 0.00 -6.14 ± 0.00 5.3

DQN 93.05 ± 1.37 -8.05 ± 1.71 5 95.59 ± 1.22 -4.94 ± 1.53 2.2

A2C 93.62 ± 0.00 -7.34 ± 0.00 4 95.56 ± 0.00 -5.01 ± 0.00 2

SAC 92.84 ± 0.63 -8.34 ± 0.79 5 93.09 ± 2.50 -8.07 ± 3.12 5.2

Test Env. Seed 14 Test Env. Seed 15

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 85.74 ± 3.47 -17.19 ± 4.32 4.6 94.54 ± 1.49 -6.20 ± 1.87 5.4

ETS 87.29 ± 0.00 -15.23 ± 0.00 3.4 95.32 ± 0.00 -5.23 ± 0.00 5.4

Heur-GD 81.20 ± 0.00 -23.00 ± 0.00 7.3 95.92 ± 0.00 -4.49 ± 0.00 2.7

Heur-LD 81.20 ± 0.00 -23.00 ± 0.00 7.3 96.05 ± 0.00 -4.30 ± 0.00 1

Heur-AT 82.36 ± 0.00 -21.52 ± 0.00 5.8 95.92 ± 0.00 -4.49 ± 0.00 2.7

DQN 91.22 ± 3.23 -10.45 ± 4.02 2.2 94.37 ± 0.74 -6.45 ± 0.90 7.4

A2C 88.16 ± 5.81 -14.27 ± 7.25 3.4 94.82 ± 0.00 -5.94 ± 0.00 6.8

SAC 93.20 ± 1.46 -7.98 ± 1.82 2 95.44 ± 0.13 -5.14 ± 0.15 4.6

Test Env. Seed 16 Test Env. Seed 17

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 83.05 ± 3.07 -20.78 ± 3.84 7.2 95.86 ± 0.48 -4.52 ± 0.59 3.4

ETS 79.38 ± 0.00 -25.36 ± 0.00 7.8 95.69 ± 0.00 -4.77 ± 0.00 3.6

Heur-GD 91.16 ± 0.00 -10.57 ± 0.00 3.8 93.48 ± 0.00 -7.39 ± 0.00 6.8

Heur-LD 91.16 ± 0.00 -10.57 ± 0.00 3.8 93.48 ± 0.00 -7.39 ± 0.00 6.8

Heur-AT 91.16 ± 0.00 -10.57 ± 0.00 3.8 93.48 ± 0.00 -7.39 ± 0.00 6.8

DQN 92.93 ± 1.19 -8.41 ± 1.48 2 94.67 ± 2.13 -5.91 ± 2.65 5

A2C 91.11 ± 0.98 -10.69 ± 1.23 4.2 96.28 ± 0.21 -3.89 ± 0.27 2.2

SAC 91.62 ± 1.26 -10.04 ± 1.59 3.4 96.52 ± 0.46 -3.62 ± 0.59 1.4

Test Env. Seed 18 Test Env. Seed 19

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 91.30 ± 2.91 -10.28 ± 3.63 2.8 95.85 ± 2.20 -4.71 ± 2.76 1.8

ETS 92.89 ± 0.00 -8.28 ± 0.00 1.4 97.40 ± 0.00 -2.78 ± 0.00 1.2

Heur-GD 87.82 ± 0.00 -14.53 ± 0.00 6.2 88.34 ± 0.00 -14.21 ± 0.00 5.2

Heur-LD 87.82 ± 0.00 -14.53 ± 0.00 6.2 88.34 ± 0.00 -14.21 ± 0.00 5.2

Heur-AT 87.82 ± 0.00 -14.53 ± 0.00 6.2 88.34 ± 0.00 -14.21 ± 0.00 5.2

DQN 90.05 ± 0.88 -11.74 ± 1.12 4.2 89.04 ± 1.82 -13.28 ± 2.28 4.8

A2C 91.64 ± 0.00 -9.75 ± 0.00 2.6 87.64 ± 1.88 -15.03 ± 2.33 6.2

SAC 87.27 ± 2.65 -15.20 ± 3.32 6.4 87.55 ± 1.25 -15.17 ± 1.57 6.4
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Table 13: Two-tailed Welch’s t-test results for Split MNIST in New Task Order experiment.

Test Env. Seed 10 Test Env. Seed 11 Test Env. Seed 12 Test Env. Seed 13 Test Env. Seed 14

Methods t p t p t p t p t p

DQN vs Random 0.50 0.636 1.77 0.117 0.62 0.560 1.62 0.152 2.32 0.049

DQN vs ETS 8.30 0.001 0.36 0.740 1.99 0.117 1.05 0.352 2.44 0.071

DQN vs Heur-GD 0.08 0.942 3.13 0.035 -2.57 0.062 1.53 0.201 6.21 0.003

DQN vs Heur-LD: -1.64 0.175 3.13 0.035 1.63 0.177 3.97 0.017 6.21 0.003

DQN vs Heur-AT 0.08 0.942 3.13 0.035 -2.57 0.062 1.53 0.201 5.49 0.005

DQN vs A2C -1.08 0.341 -2.65 0.056 -0.83 0.455 0.06 0.957 0.92 0.391

DQN vs SAC -0.15 0.883 -1.93 0.120 0.29 0.782 1.80 0.123 -1.12 0.309

A2C vs Random 1.01 0.369 6.32 0.003 1.20 0.298 1.85 0.138 0.72 0.499

A2C vs ETS inf 0.000 28.80 0.000 inf 0.000 inf 0.000 0.30 0.778

A2C vs Heur-GD inf 0.000 55.32 0.000 -inf 0.000 inf 0.000 2.40 0.075

A2C vs Heur-LD -inf 0.000 55.32 0.000 inf 0.000 inf 0.000 2.40 0.075

A2C vs Heur-AT inf 0.000 55.32 0.000 -inf 0.000 inf 0.000 2.00 0.117

A2C vs DQN 1.08 0.341 2.65 0.056 0.83 0.455 -0.06 0.957 -0.92 0.391

A2C vs SAC 1.00 0.372 2.75 0.035 2.49 0.068 1.98 0.119 -1.68 0.159

SAC vs Random 0.59 0.579 5.26 0.004 0.51 0.635 -0.35 0.737 3.97 0.009

SAC vs ETS 9.73 0.001 10.26 0.001 3.62 0.022 -1.49 0.210 8.12 0.001

SAC vs Heur-GD 0.32 0.765 22.50 0.000 -6.27 0.003 -1.26 0.277 16.46 0.000

SAC vs Heur-LD -1.65 0.174 22.50 0.000 2.85 0.046 -0.07 0.950 16.46 0.000

SAC vs Heur-AT 0.32 0.765 22.50 0.000 -6.27 0.003 -1.26 0.277 14.87 0.000

SAC vs DQN 0.15 0.883 1.93 0.120 -0.29 0.782 -1.80 0.123 1.12 0.309

SAC vs A2C -1.00 0.372 -2.75 0.035 -2.49 0.068 -1.98 0.119 1.68 0.159

Test Env. Seed 15 Test Env. Seed 16 Test Env. Seed 17 Test Env. Seed 18 Test Env. Seed 19

Methods t p t p t p t p t p

DQN vs Random -0.21 0.844 6.01 0.002 -1.09 0.332 -0.82 0.452 -4.76 0.002

DQN vs ETS -2.60 0.060 22.75 0.000 -0.95 0.396 -6.48 0.003 -9.17 0.001

DQN vs Heur-GD -4.22 0.013 2.98 0.041 1.12 0.324 5.10 0.007 0.77 0.484

DQN vs Heur-LD: -4.57 0.010 2.98 0.041 1.12 0.324 5.10 0.007 0.77 0.484

DQN vs Heur-AT -4.22 0.013 2.98 0.041 1.12 0.324 5.10 0.007 0.77 0.484

DQN vs A2C -1.24 0.283 2.36 0.047 -1.50 0.205 -3.63 0.022 1.07 0.315

DQN vs SAC -2.86 0.043 1.51 0.169 -1.70 0.159 2.00 0.104 1.35 0.219

A2C vs Random 0.38 0.722 5.00 0.005 1.60 0.164 0.24 0.824 -5.67 0.001

A2C vs ETS -inf 0.000 23.87 0.000 5.56 0.005 -inf 0.000 -10.39 0.000

A2C vs Heur-GD -inf 0.000 -0.10 0.925 26.08 0.000 inf 0.000 -0.75 0.498

A2C vs Heur-LD -inf 0.000 -0.10 0.925 26.08 0.000 inf 0.000 -0.75 0.498

A2C vs Heur-AT -inf 0.000 -0.10 0.925 26.08 0.000 inf 0.000 -0.75 0.498

A2C vs DQN 1.24 0.283 -2.36 0.047 1.50 0.205 3.63 0.022 -1.07 0.315

A2C vs SAC -9.78 0.001 -0.64 0.538 -0.93 0.389 3.31 0.030 0.08 0.939

SAC vs Random 1.20 0.296 5.17 0.003 1.98 0.084 -2.05 0.075 -6.55 0.000

SAC vs ETS 1.80 0.146 19.47 0.000 3.60 0.023 -4.25 0.013 -15.70 0.000

SAC vs Heur-GD -7.74 0.001 0.74 0.500 13.08 0.000 -0.42 0.697 -1.26 0.277

SAC vs Heur-LD -9.80 0.001 0.74 0.500 13.08 0.000 -0.42 0.697 -1.26 0.277

SAC vs Heur-AT -7.74 0.001 0.74 0.500 13.08 0.000 -0.42 0.697 -1.26 0.277

SAC vs DQN 2.86 0.043 -1.51 0.169 1.70 0.159 -2.00 0.104 -1.35 0.219

SAC vs A2C 9.78 0.001 0.64 0.538 0.93 0.389 -3.31 0.030 -0.08 0.939
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Table 14: Performance comparison in every test environment with seed (10-19) with with Split
FashionMNIST for New Task Order experiment. Under each column named ’Test Env. Seed
X’, we show the mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds
for the corresponding method.

Test Env. Seed 10 Test Env. Seed 11

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 96.79 ± 3.02 -3.11 ± 3.76 2.4 90.84 ± 1.64 -8.02 ± 2.04 5.4

ETS 96.10 ± 0.00 -3.98 ± 0.00 6.6 88.84 ± 0.00 -10.55 ± 0.00 6.8

Heur-GD 97.96 ± 0.00 -1.93 ± 0.00 2.5 93.21 ± 0.00 -4.96 ± 0.00 4.4

Heur-LD 97.96 ± 0.00 -1.93 ± 0.00 2.5 94.68 ± 0.00 -3.12 ± 0.00 1

Heur-AT 91.95 ± 0.00 -9.30 ± 0.00 7.8 93.54 ± 0.00 -4.70 ± 0.00 3

DQN 96.71 ± 0.69 -3.47 ± 0.86 5.3 90.46 ± 4.25 -8.60 ± 5.32 5.6

A2C 96.93 ± 0.07 -3.20 ± 0.09 5.1 85.60 ± 0.64 -14.65 ± 0.79 7.8

SAC 97.38 ± 0.49 -2.63 ± 0.61 3.8 93.98 ± 0.21 -4.18 ± 0.26 2

Test Env. Seed 12 Test Env. Seed 13

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.97 ± 4.60 -6.60 ± 5.74 3.4 91.66 ± 3.08 -9.38 ± 3.85 7.4

ETS 91.25 ± 0.00 -10.08 ± 0.00 6.6 91.24 ± 0.00 -9.85 ± 0.00 7.6

Heur-GD 94.97 ± 0.00 -5.26 ± 0.00 5 95.09 ± 0.00 -5.10 ± 0.00 6

Heur-LD 96.14 ± 0.00 -3.89 ± 0.00 2.2 96.23 ± 0.00 -3.69 ± 0.00 4.8

Heur-AT 95.84 ± 0.00 -4.21 ± 0.00 3.4 98.10 ± 0.00 -1.38 ± 0.00 2

DQN 94.46 ± 3.12 -6.00 ± 3.95 4.4 96.91 ± 0.90 -2.83 ± 1.12 3.5

A2C 87.67 ± 0.00 -14.49 ± 0.00 7.8 97.70 ± 0.52 -1.87 ± 0.67 3.2

SAC 95.89 ± 1.02 -4.18 ± 1.32 3.2 98.13 ± 0.79 -1.35 ± 0.95 1.5

Test Env. Seed 14 Test Env. Seed 15

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 94.17 ± 1.37 -3.79 ± 1.73 4.2 93.74 ± 0.95 -4.53 ± 1.18 1.4

ETS 90.04 ± 0.00 -8.92 ± 0.00 7 93.51 ± 0.00 -4.81 ± 0.00 1.6

Heur-GD 95.37 ± 0.00 -2.26 ± 0.00 2 79.33 ± 0.00 -22.05 ± 0.00 8

Heur-LD 95.07 ± 0.00 -2.65 ± 0.00 4.2 92.61 ± 0.00 -5.44 ± 0.00 3

Heur-AT 81.98 ± 0.00 -18.88 ± 0.00 8 88.54 ± 0.00 -10.50 ± 0.00 5.8

DQN 94.47 ± 2.12 -3.12 ± 2.66 2.8 89.56 ± 0.59 -9.25 ± 0.74 5.2

A2C 94.61 ± 0.11 -2.96 ± 0.14 5.2 80.68 ± 0.24 -20.34 ± 0.29 7

SAC 95.31 ± 0.18 -2.05 ± 0.24 2.6 90.52 ± 1.03 -8.04 ± 1.29 4

Test Env. Seed 16 Test Env. Seed 17

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 90.96 ± 1.68 -7.18 ± 2.06 2.4 98.99 ± 0.26 -0.66 ± 0.34 4.4

ETS 94.41 ± 0.00 -2.96 ± 0.00 1 98.11 ± 0.00 -1.77 ± 0.00 8

Heur-GD 73.82 ± 0.00 -28.91 ± 0.00 8 99.37 ± 0.00 -0.24 ± 0.00 1

Heur-LD 80.40 ± 0.00 -20.66 ± 0.00 7 99.32 ± 0.00 -0.30 ± 0.00 2

Heur-AT 89.24 ± 0.00 -9.68 ± 0.00 3.8 98.74 ± 0.00 -0.99 ± 0.00 5.6

DQN 89.39 ± 2.47 -9.49 ± 3.09 3.6 98.76 ± 0.31 -0.97 ± 0.38 5.8

A2C 85.33 ± 2.66 -14.62 ± 3.36 5 98.89 ± 0.27 -0.80 ± 0.33 5.1

SAC 85.15 ± 2.98 -14.80 ± 3.70 5.2 98.95 ± 0.20 -0.73 ± 0.26 4.1

Test Env. Seed 18 Test Env. Seed 19

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 89.92 ± 3.44 -11.26 ± 4.30 6.2 97.64 ± 0.79 -1.58 ± 1.06 1.8

ETS 93.56 ± 0.00 -6.74 ± 0.00 5.2 97.49 ± 0.00 -1.81 ± 0.00 2

Heur-GD 92.92 ± 0.00 -7.31 ± 0.00 6.4 95.79 ± 0.00 -3.94 ± 0.00 5.8

Heur-LD 92.06 ± 0.00 -8.40 ± 0.00 7.4 93.42 ± 0.00 -6.85 ± 0.00 7.6

Heur-AT 94.22 ± 0.00 -5.66 ± 0.00 2.4 96.57 ± 0.00 -3.01 ± 0.00 4.2

DQN 95.60 ± 0.74 -3.92 ± 0.93 1 95.50 ± 1.72 -4.42 ± 2.16 5.4

A2C 94.06 ± 0.46 -5.88 ± 0.58 3.3 97.07 ± 0.33 -2.41 ± 0.40 2.8

SAC 93.87 ± 0.38 -6.13 ± 0.48 4.1 94.04 ± 2.81 -6.29 ± 3.52 6.4
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Table 15: Two-tailed Welch’s t-test results for Split FashionMNIST in New Task Order ex-
periment.

Test Env. Seed 10 Test Env. Seed 11 Test Env. Seed 12 Test Env. Seed 13 Test Env. Seed 14

Methods t p t p t p t p t p

DQN vs Random -0.05 0.962 -0.17 0.871 0.18 0.864 3.28 0.024 0.24 0.819

DQN vs ETS 1.78 0.150 0.76 0.490 2.06 0.109 12.55 0.000 4.19 0.014

DQN vs Heur-GD -3.61 0.023 -1.29 0.265 -0.33 0.761 4.03 0.016 -0.85 0.445

DQN vs Heur-LD: -3.61 0.023 -1.99 0.118 -1.07 0.343 1.51 0.205 -0.56 0.604

DQN vs Heur-AT 13.80 0.000 -1.45 0.221 -0.88 0.427 -2.62 0.059 11.80 0.000

DQN vs A2C -0.61 0.574 2.26 0.084 4.35 0.012 -1.51 0.180 -0.13 0.901

DQN vs SAC -1.58 0.157 -1.65 0.173 -0.87 0.424 -2.03 0.077 -0.79 0.475

A2C vs Random 0.09 0.934 -5.96 0.002 -2.74 0.052 3.87 0.016 0.64 0.556

A2C vs ETS 22.94 0.000 -10.13 0.001 -inf 0.000 24.85 0.000 81.68 0.000

A2C vs Heur-GD -28.72 0.000 -23.78 0.000 -inf 0.000 10.04 0.001 -13.50 0.000

A2C vs Heur-LD -28.72 0.000 -28.38 0.000 -inf 0.000 5.65 0.005 -8.14 0.001

A2C vs Heur-AT 138.22 0.000 -24.81 0.000 -inf 0.000 -1.54 0.199 225.61 0.000

A2C vs DQN 0.61 0.574 -2.26 0.084 -4.35 0.012 1.51 0.180 0.13 0.901

A2C vs SAC -1.85 0.136 -24.85 0.000 -16.11 0.000 -0.91 0.391 -6.60 0.000

SAC vs Random 0.39 0.719 3.79 0.018 0.82 0.456 4.08 0.012 1.64 0.173

SAC vs ETS 5.25 0.006 48.45 0.000 9.10 0.001 17.48 0.000 58.96 0.000

SAC vs Heur-GD -2.36 0.077 7.23 0.002 1.81 0.144 7.72 0.002 -0.67 0.539

SAC vs Heur-LD -2.36 0.077 -6.64 0.003 -0.48 0.655 4.82 0.008 2.68 0.055

SAC vs Heur-AT 22.23 0.000 4.11 0.015 0.11 0.921 0.08 0.939 149.13 0.000

SAC vs DQN 1.58 0.157 1.65 0.173 0.87 0.424 2.03 0.077 0.79 0.475

SAC vs A2C 1.85 0.136 24.85 0.000 16.11 0.000 0.91 0.391 6.60 0.000

Test Env. Seed 15 Test Env. Seed 16 Test Env. Seed 17 Test Env. Seed 18 Test Env. Seed 19

Methods t p t p t p t p t p

DQN vs Random -7.48 0.000 -1.05 0.327 -1.11 0.300 3.23 0.028 -2.26 0.067

DQN vs ETS -13.28 0.000 -4.06 0.015 4.28 0.013 5.49 0.005 -2.31 0.082

DQN vs Heur-GD 34.42 0.000 12.59 0.000 -3.97 0.017 7.21 0.002 -0.34 0.752

DQN vs Heur-LD: -10.25 0.001 7.27 0.002 -3.64 0.022 9.52 0.001 2.41 0.073

DQN vs Heur-AT 3.44 0.026 0.12 0.912 0.16 0.883 3.72 0.021 -1.24 0.281

DQN vs A2C 27.78 0.000 2.23 0.056 -0.64 0.540 3.54 0.010 -1.79 0.143

DQN vs SAC -1.61 0.155 2.19 0.061 -1.02 0.341 4.14 0.006 0.89 0.407

A2C vs Random -26.79 0.000 -3.58 0.010 -0.50 0.634 2.39 0.073 -1.34 0.235

A2C vs ETS -109.10 0.000 -6.83 0.002 5.87 0.004 2.18 0.094 -2.52 0.066

A2C vs Heur-GD 11.50 0.000 8.66 0.001 -3.56 0.024 4.99 0.008 7.67 0.002

A2C vs Heur-LD -101.45 0.000 3.71 0.021 -3.19 0.033 8.76 0.001 21.88 0.000

A2C vs Heur-AT -66.83 0.000 -2.94 0.042 1.15 0.313 -0.71 0.517 3.00 0.040

A2C vs DQN -27.78 0.000 -2.23 0.056 0.64 0.540 -3.54 0.010 1.79 0.143

A2C vs SAC -18.55 0.000 0.09 0.931 -0.34 0.740 0.62 0.552 2.14 0.097

SAC vs Random -4.59 0.002 -3.40 0.013 -0.21 0.842 2.29 0.083 -2.47 0.061

SAC vs ETS -5.77 0.004 -6.22 0.003 8.22 0.001 1.66 0.172 -2.45 0.070

SAC vs Heur-GD 21.63 0.000 7.62 0.002 -4.08 0.015 5.04 0.007 -1.25 0.281

SAC vs Heur-LD -4.03 0.016 3.20 0.033 -3.59 0.023 9.59 0.001 0.44 0.683

SAC vs Heur-AT 3.83 0.019 -2.75 0.052 2.07 0.107 -1.83 0.141 -1.80 0.146

SAC vs DQN 1.61 0.155 -2.19 0.061 1.02 0.341 -4.14 0.006 -0.89 0.407

SAC vs A2C 18.55 0.000 -0.09 0.931 0.34 0.740 -0.62 0.552 -2.14 0.097
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Table 16: Performance comparison in every test environment with seed (10-19) with with Split
notMNIST for New Task Order experiment. Under each column named ’Test Env. Seed X’,
we show the mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for
the corresponding method.

Test Env. Seed 10 Test Env. Seed 11

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 89.19 ± 3.60 -9.93 ± 4.54 5.6 91.90 ± 1.05 -2.01 ± 1.35 4.4

ETS 93.24 ± 0.00 -4.74 ± 0.00 1.8 91.79 ± 0.00 -2.28 ± 0.00 4.2

Heur-GD 91.58 ± 0.00 -5.60 ± 0.00 4.4 90.92 ± 0.00 -4.21 ± 0.00 7.8

Heur-LD 90.88 ± 0.00 -6.51 ± 0.00 7 91.60 ± 0.00 -3.31 ± 0.00 6.4

Heur-AT 91.36 ± 0.00 -5.48 ± 0.00 5.4 91.70 ± 0.00 -3.44 ± 0.00 5.4

DQN 93.70 ± 1.02 -3.37 ± 0.72 2 92.73 ± 0.77 -2.12 ± 0.65 2

A2C 91.78 ± 0.60 -5.63 ± 0.49 4.5 92.66 ± 0.36 -2.31 ± 0.33 2

SAC 91.34 ± 2.13 -6.52 ± 2.52 5.3 91.95 ± 0.68 -3.09 ± 1.24 3.8

Test Env. Seed 12 Test Env. Seed 13

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 90.59 ± 2.85 -7.94 ± 3.69 4.6 91.63 ± 2.40 -3.73 ± 2.70 4.2

ETS 83.06 ± 0.00 -17.48 ± 0.00 8 86.28 ± 0.00 -10.76 ± 0.00 8

Heur-GD 92.89 ± 0.00 -4.45 ± 0.00 2.2 94.06 ± 0.00 -1.22 ± 0.00 1.2

Heur-LD 92.96 ± 0.00 -3.57 ± 0.00 1.2 92.21 ± 0.00 -3.53 ± 0.00 4.4

Heur-AT 91.20 ± 0.00 -5.92 ± 0.00 5.6 88.77 ± 0.00 -7.46 ± 0.00 6.6

DQN 91.59 ± 0.87 -5.46 ± 0.95 4.4 92.30 ± 1.48 -3.42 ± 1.86 3.9

A2C 91.02 ± 0.26 -5.97 ± 0.19 6.2 93.52 ± 0.60 -2.05 ± 0.44 2.7

SAC 92.17 ± 0.23 -4.68 ± 0.30 3.8 91.42 ± 1.80 -4.52 ± 2.26 5

Test Env. Seed 14 Test Env. Seed 15

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 92.42 ± 0.80 -3.95 ± 0.94 3.6 89.42 ± 1.66 -6.65 ± 1.97 4

ETS 92.67 ± 0.00 -3.89 ± 0.00 2.6 89.32 ± 0.00 -6.41 ± 0.00 4.6

Heur-GD 93.63 ± 0.00 -1.46 ± 0.00 1 92.08 ± 0.00 -4.12 ± 0.00 1.2

Heur-LD 89.18 ± 0.00 -7.02 ± 0.00 6.8 89.58 ± 0.00 -7.25 ± 0.00 3.4

Heur-AT 88.14 ± 0.00 -8.58 ± 0.00 7.8 84.47 ± 0.00 -14.12 ± 0.00 7.8

DQN 90.69 ± 0.79 -5.25 ± 0.95 5.8 86.99 ± 1.50 -10.77 ± 1.87 6.4

A2C 91.47 ± 1.79 -4.64 ± 2.34 4.8 89.04 ± 2.55 -8.28 ± 3.07 4.4

SAC 92.47 ± 0.50 -2.79 ± 0.62 3.6 88.81 ± 3.35 -8.56 ± 4.46 4.2

Test Env. Seed 16 Test Env. Seed 17

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.66 ± 0.54 -0.94 ± 0.77 1 90.30 ± 2.35 -7.20 ± 2.85 6.8

ETS 91.91 ± 0.00 -2.65 ± 0.00 2.8 92.56 ± 0.00 -3.99 ± 0.00 3.8

Heur-GD 89.22 ± 0.00 -5.95 ± 0.00 4.9 91.30 ± 0.00 -5.69 ± 0.00 6.7

Heur-LD 89.22 ± 0.00 -5.95 ± 0.00 4.9 91.30 ± 0.00 -5.69 ± 0.00 6.7

Heur-AT 86.29 ± 0.00 -9.36 ± 0.00 8 93.87 ± 0.00 -1.30 ± 0.00 2.4

DQN 88.94 ± 1.41 -5.84 ± 1.93 5.6 94.53 ± 0.90 -1.41 ± 1.11 1.4

A2C 91.85 ± 1.45 -1.88 ± 1.43 2.6 92.58 ± 0.67 -3.78 ± 0.99 4

SAC 88.30 ± 0.76 -6.65 ± 1.17 6.2 92.50 ± 1.67 -3.36 ± 1.89 4.2

Test Env. Seed 18 Test Env. Seed 19

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 94.78 ± 2.97 -2.78 ± 3.76 2.2 92.83 ± 2.19 -2.62 ± 2.73 5

ETS 92.43 ± 0.00 -5.57 ± 0.00 6.4 90.89 ± 0.00 -5.17 ± 0.00 7.8

Heur-GD 92.79 ± 0.00 -5.69 ± 0.00 4.8 94.16 ± 0.00 -2.21 ± 0.00 3.2

Heur-LD 94.65 ± 0.00 -3.71 ± 0.00 1.8 94.94 ± 0.00 -1.01 ± 0.00 1.2

Heur-AT 88.15 ± 0.00 -11.30 ± 0.00 8 93.46 ± 0.00 -3.99 ± 0.00 5.8

DQN 93.32 ± 0.69 -4.77 ± 1.02 4.4 94.08 ± 0.96 -3.10 ± 1.02 3.8

A2C 93.64 ± 0.22 -4.58 ± 0.48 3.4 93.66 ± 0.80 -3.82 ± 0.94 3.8

SAC 92.57 ± 1.35 -5.96 ± 2.05 5 93.28 ± 0.47 -4.22 ± 0.59 5.4
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Table 17: Two-tailed Welch’s t-test results for Split notMNIST in New Task Order experiment.

TestEnv. Seed 10 TestEnv. Seed 11 TestEnv. Seed 12 TestEnv. Seed 13 TestEnv. Seed 14

Methods t p t p t p t p t p

DQN vs Random 2.41 0.065 1.27 0.242 0.67 0.534 0.47 0.651 -3.09 0.015

DQN vs ETS 0.89 0.423 2.45 0.071 19.64 0.000 8.12 0.001 -5.03 0.007

DQN vs Heur-GD 4.15 0.014 4.72 0.009 -3.00 0.040 -2.37 0.077 -7.47 0.002

DQN vs Heur-LD: 5.52 0.005 2.96 0.041 -3.16 0.034 0.13 0.906 3.84 0.018

DQN vs Heur-At 4.58 0.010 2.70 0.054 0.88 0.428 4.76 0.009 6.47 0.003

DQN vs A2C 3.23 0.016 0.17 0.870 1.25 0.271 -1.52 0.186 -0.80 0.457

DQN vs SAC 2.00 0.095 1.52 0.168 -1.31 0.254 0.76 0.471 -3.84 0.007

A2C vs Random 1.42 0.226 1.36 0.234 0.30 0.777 1.52 0.194 -0.97 0.372

A2C vs ETS -4.85 0.008 4.73 0.009 60.22 0.000 24.32 0.000 -1.34 0.251

A2C vs Heur-GD 0.67 0.537 9.51 0.001 -14.14 0.000 -1.82 0.142 -2.42 0.073

A2C vs Heur-LD 2.99 0.040 5.82 0.004 -14.66 0.000 4.40 0.012 2.57 0.062

A2C vs Heur-At 1.40 0.233 5.27 0.006 -1.39 0.238 15.96 0.000 3.73 0.020

A2C vs DQN -3.23 0.016 -0.17 0.870 -1.25 0.271 1.52 0.186 0.80 0.457

A2C vs SAC 0.40 0.705 1.82 0.118 -6.58 0.000 2.21 0.080 -1.08 0.332

SAC vs Random 1.02 0.342 0.08 0.941 1.11 0.329 -0.14 0.889 0.12 0.908

SAC vs ETS -1.79 0.148 0.46 0.668 79.21 0.000 5.70 0.005 -0.78 0.478

SAC vs Heur-GD -0.23 0.831 3.01 0.039 -6.23 0.003 -2.93 0.043 -4.65 0.010

SAC vs Heur-LD 0.43 0.691 1.04 0.357 -6.83 0.002 -0.88 0.430 13.29 0.000

SAC vs Heur-At -0.02 0.984 0.75 0.495 8.42 0.001 2.94 0.042 17.45 0.000

SAC vs DQN -2.00 0.095 -1.52 0.168 1.31 0.254 -0.76 0.471 3.84 0.007

SAC vs A2C -0.40 0.705 -1.82 0.118 6.58 0.000 -2.21 0.080 1.08 0.332

TestEnv. Seed 15 TestEnv. Seed 16 TestEnv. Seed 17 TestEnv. Seed 18 TestEnv. Seed 19

Methods t p t p t p t p t p

DQN vs Random -2.17 0.062 -6.27 0.001 3.36 0.019 -0.96 0.387 1.04 0.340

DQN vs ETS -3.11 0.036 -4.23 0.013 4.40 0.012 2.60 0.060 6.64 0.003

DQN vs Heur-GD -6.80 0.002 -0.40 0.708 7.21 0.002 1.56 0.194 -0.16 0.881

DQN vs Heur-LD: -3.45 0.026 -0.40 0.708 7.21 0.002 -3.85 0.018 -1.79 0.149

DQN vs Heur-At 3.37 0.028 3.77 0.020 1.47 0.214 15.03 0.000 1.29 0.267

DQN vs A2C -1.39 0.211 -2.89 0.020 3.50 0.009 -0.87 0.426 0.68 0.514

DQN vs SAC -0.99 0.362 0.80 0.453 2.14 0.075 0.99 0.360 1.50 0.186

A2C vs Random -0.25 0.809 -2.32 0.067 1.86 0.126 -0.77 0.483 0.70 0.512

A2C vs ETS -0.22 0.837 -0.07 0.945 0.06 0.958 11.20 0.000 6.87 0.002

A2C vs Heur-GD -2.39 0.075 3.62 0.022 3.84 0.018 7.88 0.001 -1.26 0.277

A2C vs Heur-LD -0.42 0.694 3.62 0.022 3.84 0.018 -9.37 0.001 -3.20 0.033

A2C vs Heur-At 3.59 0.023 7.66 0.002 -3.89 0.018 50.85 0.000 0.48 0.659

A2C vs DQN 1.39 0.211 2.89 0.020 -3.50 0.009 0.87 0.426 -0.68 0.514

A2C vs SAC 0.11 0.916 4.33 0.005 0.08 0.938 1.56 0.191 0.80 0.452

SAC vs Random -0.33 0.755 -11.47 0.000 1.53 0.169 -1.36 0.227 0.40 0.708

SAC vs ETS -0.30 0.776 -9.46 0.001 -0.07 0.951 0.21 0.842 10.09 0.001

SAC vs Heur-GD -1.96 0.122 -2.42 0.073 1.45 0.222 -0.32 0.765 -3.71 0.021

SAC vs Heur-LD -0.46 0.670 -2.42 0.073 1.45 0.222 -3.08 0.037 -7.01 0.002

SAC vs Heur-At 2.60 0.060 5.27 0.006 -1.64 0.176 6.55 0.003 -0.77 0.484

SAC vs DQN 0.99 0.362 -0.80 0.453 -2.14 0.075 -0.99 0.360 -1.50 0.186

SAC vs A2C -0.11 0.916 -4.33 0.005 -0.08 0.938 -1.56 0.191 -0.80 0.452
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Table 18: Performance comparison in every test environment with seed (10-19) with with Split
CIFAR-10 for New Task Order experiment. Under each column named ’Test Env. Seed X’, we
show the mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for the
corresponding method.

Test Env. Seed 10 Test Env. Seed 11

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 86.35 ± 1.57 -13.27 ± 1.98 4.2 73.05 ± 1.42 -27.40 ± 1.91 7.8

ETS 87.10 ± 0.00 -12.31 ± 0.00 1.8 75.16 ± 0.00 -25.14 ± 0.00 7.2

Heur-GD 86.31 ± 0.00 -13.19 ± 0.00 4 79.45 ± 0.00 -19.79 ± 0.00 5.6

Heur-LD 86.67 ± 0.00 -12.74 ± 0.00 3 81.64 ± 0.00 -17.05 ± 0.00 2

Heur-AT 85.94 ± 0.00 -13.69 ± 0.00 5.2 81.12 ± 0.00 -17.74 ± 0.00 3

DQN 87.06 ± 1.26 -12.42 ± 1.57 2.8 79.42 ± 0.66 -19.64 ± 0.83 5.4

A2C 84.55 ± 0.00 -15.59 ± 0.00 7.4 82.90 ± 0.00 -15.26 ± 0.00 1

SAC 84.44 ± 0.64 -15.66 ± 0.81 7.6 80.68 ± 0.00 -18.04 ± 0.00 4

Test Env. Seed 12 Test Env. Seed 13

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 87.86 ± 1.12 -10.36 ± 1.44 3.8 80.07 ± 1.43 -15.40 ± 1.78 4.1

ETS 85.53 ± 0.00 -13.33 ± 0.00 7.6 76.85 ± 0.00 -19.34 ± 0.00 8

Heur-GD 89.76 ± 0.00 -7.69 ± 0.00 1 78.93 ± 0.00 -16.48 ± 0.00 6.8

Heur-LD 87.52 ± 0.00 -10.40 ± 0.00 4.4 80.81 ± 0.00 -14.20 ± 0.00 3.6

Heur-AT 89.57 ± 0.00 -8.15 ± 0.00 2 80.19 ± 0.00 -14.77 ± 0.00 5.1

DQN 85.18 ± 0.88 -13.31 ± 1.12 7.4 80.43 ± 0.58 -14.47 ± 0.75 4

A2C 86.42 ± 0.56 -11.90 ± 0.75 5.4 81.24 ± 0.13 -13.35 ± 0.15 1.9

SAC 87.53 ± 1.02 -10.46 ± 1.34 4.4 80.97 ± 0.47 -13.67 ± 0.64 2.5

Test Env. Seed 14 Test Env. Seed 15

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 82.04 ± 2.37 -17.84 ± 2.95 7 84.86 ± 0.62 -14.77 ± 0.79 2.2

ETS 77.79 ± 0.00 -23.26 ± 0.00 7.8 83.78 ± 0.00 -16.15 ± 0.00 6.2

Heur-GD 86.86 ± 0.00 -11.70 ± 0.00 1 83.52 ± 0.00 -16.29 ± 0.00 7.2

Heur-LD 84.00 ± 0.00 -15.24 ± 0.00 5.8 84.08 ± 0.00 -15.58 ± 0.00 4.5

Heur-AT 86.57 ± 0.00 -12.05 ± 0.00 2 84.08 ± 0.00 -15.58 ± 0.00 4.5

DQN 84.71 ± 1.14 -14.62 ± 1.36 5.1 82.22 ± 1.88 -17.83 ± 2.38 6.6

A2C 85.81 ± 0.32 -13.35 ± 0.40 4 84.74 ± 0.31 -14.65 ± 0.39 2

SAC 86.16 ± 0.44 -12.90 ± 0.55 3.3 84.43 ± 0.20 -15.05 ± 0.26 2.8

Test Env. Seed 16 Test Env. Seed 17

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 87.60 ± 1.72 -10.51 ± 2.15 4.4 72.33 ± 2.14 -26.27 ± 2.73 7

ETS 87.80 ± 0.00 -10.20 ± 0.00 3.4 70.35 ± 0.00 -28.79 ± 0.00 7.6

Heur-GD 86.77 ± 0.00 -12.23 ± 0.00 5.7 74.14 ± 0.00 -23.30 ± 0.00 5.8

Heur-LD 86.51 ± 0.00 -12.63 ± 0.00 7.2 76.08 ± 0.00 -20.88 ± 0.00 3.4

Heur-AT 86.77 ± 0.00 -12.23 ± 0.00 5.7 76.44 ± 0.00 -20.49 ± 0.00 2.2

DQN 87.66 ± 0.25 -11.02 ± 0.33 3.2 75.13 ± 3.56 -21.96 ± 4.45 3.8

A2C 88.03 ± 0.00 -10.59 ± 0.00 2 75.72 ± 0.00 -21.18 ± 0.00 4.5

SAC 87.14 ± 1.38 -11.67 ± 1.64 4.4 77.20 ± 0.87 -19.25 ± 1.12 1.7

Test Env. Seed 18 Test Env. Seed 19

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 87.43 ± 0.88 -10.75 ± 1.03 7.2 74.89 ± 2.33 -25.80 ± 2.89 8

ETS 88.32 ± 0.00 -10.19 ± 0.00 6.4 77.67 ± 0.00 -22.16 ± 0.00 6

Heur-GD 88.59 ± 0.00 -10.34 ± 0.00 4.7 77.87 ± 0.00 -22.98 ± 0.00 4.5

Heur-LD 89.85 ± 0.00 -8.95 ± 0.00 1.2 77.50 ± 0.00 -23.50 ± 0.00 7

Heur-AT 88.59 ± 0.00 -10.34 ± 0.00 4.7 77.87 ± 0.00 -22.98 ± 0.00 4.5

DQN 88.41 ± 0.93 -10.73 ± 1.15 4.4 79.91 ± 0.87 -20.52 ± 1.07 2

A2C 89.35 ± 0.39 -9.47 ± 0.48 2.2 80.48 ± 0.00 -19.78 ± 0.00 1.7

SAC 88.57 ± 0.52 -10.48 ± 0.61 5.2 80.04 ± 0.70 -20.31 ± 0.84 2.3
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Table 19: Two-tailed Welch’s t-test results for Split CIFAR-10 in New Task Order experiment.

Test Env. Seed 10 Test Env. Seed 11 Test Env. Seed 12 Test Env. Seed 13 Test Env. Seed 14

Methods t p t p t p t p t p

DQN vs Random 0.70 0.504 8.12 0.000 -3.77 0.006 0.48 0.653 2.03 0.091

DQN vs ETS -0.07 0.948 12.90 0.000 -0.79 0.473 12.33 0.000 12.12 0.000

DQN vs Heur-GD 1.18 0.303 -0.09 0.932 -10.41 0.000 5.18 0.007 -3.77 0.020

DQN vs Heur-LD: 0.61 0.574 -6.72 0.003 -5.31 0.006 -1.29 0.265 1.24 0.283

DQN vs Heur-At 1.77 0.152 -5.15 0.007 -9.97 0.001 0.84 0.448 -3.26 0.031

DQN vs A2C 3.97 0.017 -10.54 0.000 -2.38 0.051 -2.70 0.049 -1.86 0.127

DQN vs SAC 3.70 0.010 -3.82 0.019 -3.50 0.008 -1.44 0.188 -2.37 0.062

A2C vs Random -2.29 0.084 13.83 0.000 -2.31 0.061 1.63 0.178 3.15 0.033

A2C vs ETS -inf 0.000 inf 0.000 3.19 0.033 68.53 0.000 50.37 0.000

A2C vs Heur-GD -inf 0.000 inf 0.000 -12.02 0.000 36.03 0.000 -6.59 0.003

A2C vs Heur-LD -inf 0.000 inf 0.000 -3.96 0.017 6.66 0.003 11.37 0.000

A2C vs Heur-At -inf 0.000 inf 0.000 -11.34 0.000 16.34 0.000 -4.77 0.009

A2C vs DQN -3.97 0.017 10.54 0.000 2.38 0.051 2.70 0.049 1.86 0.127

A2C vs SAC 0.35 0.746 inf 0.000 -1.92 0.101 1.07 0.336 -1.27 0.242

SAC vs Random -2.25 0.071 10.72 0.000 -0.44 0.674 1.21 0.284 3.41 0.024

SAC vs ETS -8.26 0.001 inf 0.000 3.94 0.017 17.51 0.000 37.69 0.000

SAC vs Heur-GD -5.81 0.004 inf 0.000 -4.39 0.012 8.68 0.001 -3.16 0.034

SAC vs Heur-LD -6.92 0.002 -inf 0.000 0.02 0.982 0.70 0.525 9.72 0.001

SAC vs Heur-At -4.66 0.010 -inf 0.000 -4.01 0.016 3.33 0.029 -1.86 0.137

SAC vs DQN -3.70 0.010 3.82 0.019 3.50 0.008 1.44 0.188 2.37 0.062

SAC vs A2C -0.35 0.746 -inf 0.000 1.92 0.101 -1.07 0.336 1.27 0.242

Test Env. Seed 15 Test Env. Seed 16 Test Env. Seed 17 Test Env. Seed 18 Test Env. Seed 19

Methods t p t p t p t p t p

DQN vs Random -2.67 0.045 0.07 0.945 1.35 0.222 1.53 0.165 4.03 0.010

DQN vs ETS -1.66 0.172 -1.08 0.342 2.69 0.055 0.20 0.850 5.14 0.007

DQN vs Heur-GD -1.38 0.239 7.09 0.002 0.56 0.608 -0.38 0.725 4.68 0.009

DQN vs Heur-LD: -1.98 0.119 9.15 0.001 -0.54 0.621 -3.08 0.037 5.53 0.005

DQN vs Heur-At -1.98 0.119 7.09 0.002 -0.74 0.502 -0.38 0.725 4.68 0.009

DQN vs A2C -2.65 0.054 -2.90 0.044 -0.33 0.756 -1.86 0.119 -1.31 0.259

DQN vs SAC -2.34 0.078 0.75 0.491 -1.13 0.315 -0.29 0.785 -0.23 0.822

A2C vs Random -0.35 0.740 0.50 0.643 3.17 0.034 4.00 0.009 4.80 0.009

A2C vs ETS 6.26 0.003 inf 0.000 inf 0.000 5.35 0.006 inf 0.000

A2C vs Heur-GD 7.95 0.001 inf 0.000 inf 0.000 3.95 0.017 inf 0.000

A2C vs Heur-LD 4.31 0.013 inf 0.000 -inf 0.000 -2.58 0.061 inf 0.000

A2C vs Heur-At 4.31 0.013 inf 0.000 -inf 0.000 3.95 0.017 inf 0.000

A2C vs DQN 2.65 0.054 2.90 0.044 0.33 0.756 1.86 0.119 1.31 0.259

A2C vs SAC 1.70 0.133 1.30 0.265 -3.39 0.027 2.44 0.043 1.27 0.273

SAC vs Random -1.33 0.241 -0.42 0.685 4.21 0.007 2.22 0.065 4.23 0.009

SAC vs ETS 6.37 0.003 -0.96 0.391 15.73 0.000 0.95 0.394 6.80 0.002

SAC vs Heur-GD 8.92 0.001 0.53 0.624 7.02 0.002 -0.09 0.930 6.23 0.003

SAC vs Heur-LD 3.43 0.027 0.91 0.416 2.57 0.062 -4.98 0.008 7.29 0.002

SAC vs Heur-At 3.43 0.027 0.53 0.624 1.74 0.157 -0.09 0.930 6.23 0.003

SAC vs DQN 2.34 0.078 -0.75 0.491 1.13 0.315 0.29 0.785 0.23 0.822

SAC vs A2C -1.70 0.133 -1.30 0.265 3.39 0.027 -2.44 0.043 -1.27 0.273
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Table 20: Performance comparison in every test environment with seed (0-9) with with Split
FashionMNIST for New Dataset experiment. Under each column named ’Test Env. Seed X’,
we show the mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for
the corresponding method.

Test Env. Seed 0 Test Env. Seed 1

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 94.33 ± 3.03 -6.15 ± 3.78 6 92.26 ± 3.84 -5.96 ± 4.78 4.8

ETS 97.10 ± 0.00 -2.70 ± 0.00 6.4 94.10 ± 0.00 -3.59 ± 0.00 4

Heur-GD 97.90 ± 0.00 -1.59 ± 0.00 1 95.01 ± 0.00 -2.69 ± 0.00 1.6

Heur-LD 97.59 ± 0.00 -1.99 ± 0.00 3.2 90.03 ± 0.00 -8.90 ± 0.00 7.8

Heur-AT 97.41 ± 0.00 -2.21 ± 0.00 5 94.09 ± 0.00 -3.78 ± 0.00 5

DQN 96.82 ± 1.50 -3.06 ± 1.87 4.4 93.74 ± 1.86 -4.24 ± 2.33 3.6

A2C 95.74 ± 3.33 -4.39 ± 4.15 4.8 92.80 ± 1.56 -5.27 ± 1.95 5.6

SAC 97.14 ± 0.47 -2.65 ± 0.58 5.2 94.37 ± 0.77 -3.35 ± 1.00 3.6

Test Env. Seed 2 Test Env. Seed 3

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.74 ± 2.97 -6.36 ± 3.71 6.6 94.12 ± 4.14 -6.99 ± 5.16 4.7

ETS 86.72 ± 0.00 -15.17 ± 0.00 8 89.44 ± 0.00 -12.86 ± 0.00 7.4

Heur-GD 97.41 ± 0.00 -1.87 ± 0.00 2.8 96.69 ± 0.00 -3.68 ± 0.00 4

Heur-LD 97.30 ± 0.00 -1.91 ± 0.00 3.8 90.61 ± 0.00 -11.26 ± 0.00 5.8

Heur-AT 97.65 ± 0.00 -1.58 ± 0.00 1 99.40 ± 0.00 -0.26 ± 0.00 1.1

DQN 96.13 ± 0.97 -3.47 ± 1.20 5.4 94.66 ± 5.00 -6.24 ± 6.26 4.4

A2C 97.31 ± 0.55 -1.99 ± 0.71 2.6 92.12 ± 3.75 -9.40 ± 4.68 6.2

SAC 96.20 ± 0.49 -3.37 ± 0.61 5.8 98.77 ± 0.17 -1.10 ± 0.22 2.4

Test Env. Seed 4 Test Env. Seed 5

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 83.64 ± 5.22 -16.86 ± 6.48 6.2 89.76 ± 2.46 -7.91 ± 3.06 4.4

ETS 87.07 ± 0.00 -12.61 ± 0.00 4.8 91.53 ± 0.00 -5.61 ± 0.00 1.4

Heur-GD 91.29 ± 0.00 -7.30 ± 0.00 2.8 90.33 ± 0.00 -7.25 ± 0.00 3.8

Heur-LD 86.75 ± 0.00 -12.87 ± 0.00 5.8 88.01 ± 0.00 -10.02 ± 0.00 5.6

Heur-AT 83.28 ± 0.00 -17.02 ± 0.00 7.2 90.53 ± 0.00 -6.81 ± 0.00 2.8

DQN 88.76 ± 4.73 -10.37 ± 5.95 3.6 87.31 ± 1.09 -10.89 ± 1.38 7

A2C 91.98 ± 0.17 -6.36 ± 0.18 1.4 87.93 ± 0.00 -10.07 ± 0.00 6.8

SAC 87.67 ± 4.62 -11.67 ± 5.75 4.2 89.55 ± 2.05 -8.04 ± 2.60 4.2

Test Env. Seed 6 Test Env. Seed 7

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 95.34 ± 0.74 -2.57 ± 1.01 1.4 94.40 ± 0.77 -3.53 ± 0.94 4.4

ETS 95.48 ± 0.00 -2.50 ± 0.00 1.6 95.31 ± 0.00 -2.21 ± 0.00 2.6

Heur-GD 90.01 ± 0.00 -9.09 ± 0.00 4.2 91.76 ± 0.00 -6.84 ± 0.00 6.6

Heur-LD 85.44 ± 0.00 -14.96 ± 0.00 5.6 95.14 ± 0.00 -2.64 ± 0.00 3.6

Heur-AT 76.02 ± 0.00 -26.58 ± 0.00 7.8 96.78 ± 0.00 -0.67 ± 0.00 1.2

DQN 86.60 ± 5.92 -13.56 ± 7.39 5 89.22 ± 2.34 -10.06 ± 2.88 7.7

A2C 89.14 ± 3.66 -10.35 ± 4.57 4 93.49 ± 2.58 -4.77 ± 3.18 4.8

SAC 81.95 ± 5.52 -19.31 ± 6.91 6.4 93.95 ± 0.51 -4.20 ± 0.69 5.1

Test Env. Seed 8 Test Env. Seed 9

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.15 ± 4.08 -7.22 ± 5.09 3.4 94.81 ± 3.66 -5.14 ± 4.51 3.4

ETS 94.80 ± 0.00 -5.18 ± 0.00 3 96.71 ± 0.00 -2.76 ± 0.00 2.2

Heur-GD 95.00 ± 0.00 -4.83 ± 0.00 1.8 95.27 ± 0.00 -4.75 ± 0.00 4

Heur-LD 87.86 ± 0.00 -13.66 ± 0.00 7.8 90.02 ± 0.00 -11.16 ± 0.00 7.8

Heur-AT 93.93 ± 0.00 -6.07 ± 0.00 4.2 90.29 ± 0.00 -10.82 ± 0.00 6.8

DQN 91.67 ± 2.85 -8.94 ± 3.61 5.6 95.32 ± 1.76 -4.60 ± 2.19 3

A2C 93.57 ± 0.00 -6.61 ± 0.00 5.6 91.31 ± 1.08 -9.62 ± 1.37 5.8

SAC 94.03 ± 0.96 -5.97 ± 1.21 4.6 95.39 ± 1.76 -4.52 ± 2.21 3
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Table 21: Two-tailed Welch’s t-test results for Split FashionMNIST in New Dataset experiment.

Test Env. Seed 0 Test Env. Seed 1 Test Env. Seed 2 Test Env. Seed 3 Test Env. Seed 4

Methods t p t p t p t p t p

DQN vs Random 1.47 0.193 0.69 0.515 1.53 0.187 0.17 0.872 1.46 0.184

DQN vs ETS -0.38 0.725 -0.38 0.720 19.36 0.000 2.09 0.105 0.72 0.513

DQN vs Heur-GD -1.45 0.222 -1.36 0.245 -2.63 0.058 -0.81 0.463 -1.07 0.345

DQN vs Heur-LD: -1.03 0.360 3.98 0.016 -2.40 0.074 1.62 0.181 0.85 0.442

DQN vs Heur-At -0.79 0.473 -0.37 0.728 -3.12 0.035 -1.90 0.131 2.32 0.081

DQN vs A2C 0.59 0.579 0.77 0.462 -2.11 0.076 0.81 0.442 -1.36 0.245

DQN vs SAC -0.41 0.703 -0.63 0.558 -0.13 0.905 -1.64 0.176 0.33 0.750

A2C vs Random 0.63 0.547 0.26 0.804 2.37 0.073 -0.72 0.495 3.19 0.033

A2C vs ETS -0.82 0.461 -1.67 0.171 38.38 0.000 1.43 0.226 57.27 0.000

A2C vs Heur-GD -1.30 0.265 -2.84 0.047 -0.35 0.746 -2.44 0.072 8.05 0.001

A2C vs Heur-LD -1.11 0.329 3.56 0.024 0.05 0.962 0.81 0.465 61.00 0.000

A2C vs Heur-At -1.00 0.373 -1.65 0.173 -1.22 0.290 -3.88 0.018 101.48 0.000

A2C vs DQN -0.59 0.579 -0.77 0.462 2.11 0.076 -0.81 0.442 1.36 0.245

A2C vs SAC -0.83 0.452 -1.81 0.122 3.03 0.017 -3.54 0.024 1.86 0.136

SAC vs Random 1.83 0.138 1.08 0.338 1.64 0.173 2.24 0.088 1.16 0.281

SAC vs ETS 0.15 0.885 0.71 0.517 38.96 0.000 107.86 0.000 0.26 0.807

SAC vs Heur-GD -3.26 0.031 -1.67 0.171 -4.97 0.008 24.01 0.000 -1.57 0.193

SAC vs Heur-LD -1.94 0.125 11.34 0.000 -4.52 0.011 94.33 0.000 0.40 0.710

SAC vs Heur-At -1.17 0.308 0.74 0.502 -5.96 0.004 -7.33 0.002 1.90 0.130

SAC vs DQN 0.41 0.703 0.63 0.558 0.13 0.905 1.64 0.176 -0.33 0.750

SAC vs A2C 0.83 0.452 1.81 0.122 -3.03 0.017 3.54 0.024 -1.86 0.136

Test Env. Seed 5 Test Env. Seed 6 Test Env. Seed 7 Test Env. Seed 8 Test Env. Seed 9

Methods t p t p t p t p t p

DQN vs Random -1.82 0.122 -2.93 0.041 -4.21 0.009 -0.59 0.570 0.25 0.812

DQN vs ETS -7.73 0.002 -3.00 0.040 -5.20 0.007 -2.20 0.093 -1.58 0.189

DQN vs Heur-GD -5.53 0.005 -1.15 0.313 -2.17 0.096 -2.34 0.079 0.05 0.961

DQN vs Heur-LD: -1.28 0.269 0.39 0.714 -5.06 0.007 2.67 0.056 6.00 0.004

DQN vs Heur-At -5.90 0.004 3.58 0.023 -6.46 0.003 -1.59 0.187 5.70 0.005

DQN vs A2C -1.14 0.320 -0.73 0.490 -2.45 0.040 -1.34 0.253 3.87 0.007

DQN vs SAC -1.93 0.101 1.15 0.283 -3.95 0.014 -1.57 0.179 -0.06 0.957

A2C vs Random -1.49 0.210 -3.32 0.026 -0.68 0.529 0.21 0.846 -1.84 0.129

A2C vs ETS -inf 0.000 -3.47 0.026 -1.41 0.231 -inf 0.000 -10.02 0.001

A2C vs Heur-GD -inf 0.000 -0.47 0.660 1.34 0.252 -inf 0.000 -7.35 0.002

A2C vs Heur-LD -inf 0.000 2.03 0.113 -1.28 0.270 inf 0.000 2.39 0.075

A2C vs Heur-At -inf 0.000 7.18 0.002 -2.55 0.063 -inf 0.000 1.89 0.131

A2C vs DQN 1.14 0.320 0.73 0.490 2.45 0.040 1.34 0.253 -3.87 0.007

A2C vs SAC -1.58 0.189 2.17 0.067 -0.35 0.741 -0.95 0.394 -3.94 0.006

SAC vs Random -0.13 0.897 -4.81 0.008 -0.97 0.362 0.42 0.695 0.28 0.787

SAC vs ETS -1.93 0.125 -4.90 0.008 -5.29 0.006 -1.62 0.180 -1.50 0.208

SAC vs Heur-GD -0.76 0.488 -2.92 0.043 8.53 0.001 -2.04 0.111 0.13 0.902

SAC vs Heur-LD 1.50 0.208 -1.27 0.274 -4.62 0.010 12.91 0.000 6.09 0.004

SAC vs Heur-At -0.96 0.392 2.15 0.098 -11.01 0.000 0.20 0.850 5.78 0.004

SAC vs DQN 1.93 0.101 -1.15 0.283 3.95 0.014 1.57 0.179 0.06 0.957

SAC vs A2C 1.58 0.189 -2.17 0.067 0.35 0.741 0.95 0.394 3.94 0.006
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Table 22: Performance comparison in every test environment with seed (0-9) with with Split
notMNIST for New Dataset experiment. Under each column named ’Test Env. Seed X’, we
show the mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for the
corresponding method.

Test Env. Seed 0 Test Env. Seed 1

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.09 ± 2.31 -3.66 ± 2.82 3.4 92.13 ± 0.80 -3.91 ± 0.93 4.6

ETS 91.08 ± 0.00 -6.61 ± 0.00 6.8 92.46 ± 0.00 -3.75 ± 0.00 3.8

Heur-GD 92.41 ± 0.00 -3.55 ± 0.00 4.8 91.18 ± 0.00 -6.26 ± 0.00 6.8

Heur-LD 92.41 ± 0.00 -3.55 ± 0.00 4.8 91.18 ± 0.00 -6.26 ± 0.00 6.8

Heur-AT 92.41 ± 0.00 -3.55 ± 0.00 4.8 91.18 ± 0.00 -6.26 ± 0.00 6.8

DQN 90.52 ± 3.15 -6.92 ± 3.57 5.6 93.79 ± 0.86 -1.65 ± 1.03 2.4

A2C 91.62 ± 1.62 -5.47 ± 2.49 4.8 93.26 ± 1.02 -2.12 ± 1.41 3.2

SAC 97.47 ± 0.21 -2.24 ± 0.27 1 94.54 ± 0.96 -3.12 ± 1.21 1.6

Test Env. Seed 2 Test Env. Seed 3

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 87.13 ± 3.01 -10.47 ± 3.60 5.4 89.04 ± 3.01 -8.60 ± 3.86 7.4

ETS 91.23 ± 0.00 -5.23 ± 0.00 3 89.33 ± 0.00 -8.28 ± 0.00 7.4

Heur-GD 82.58 ± 0.00 -15.83 ± 0.00 6.8 95.26 ± 0.00 -0.99 ± 0.00 2.8

Heur-LD 82.58 ± 0.00 -15.83 ± 0.00 6.8 95.26 ± 0.00 -0.99 ± 0.00 2.8

Heur-AT 82.58 ± 0.00 -15.83 ± 0.00 6.8 95.26 ± 0.00 -0.99 ± 0.00 2.8

DQN 91.92 ± 2.03 -4.77 ± 2.31 2.6 92.49 ± 0.73 -4.69 ± 0.54 6.2

A2C 90.46 ± 0.99 -6.03 ± 1.24 3.6 94.61 ± 0.82 -2.06 ± 0.46 4.8

SAC 97.00 ± 0.37 -2.39 ± 0.46 1 97.26 ± 2.15 -2.99 ± 2.68 1.8

Test Env. Seed 4 Test Env. Seed 5

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 91.37 ± 1.63 -5.04 ± 2.02 5 91.06 ± 1.45 -5.87 ± 1.82 5.8

ETS 90.52 ± 0.00 -5.81 ± 0.00 6.6 90.73 ± 0.00 -6.00 ± 0.00 6.6

Heur-GD 91.64 ± 0.00 -6.55 ± 0.00 4.3 91.80 ± 0.00 -3.52 ± 0.00 4.2

Heur-LD 92.66 ± 0.00 -5.28 ± 0.00 2.4 91.80 ± 0.00 -3.52 ± 0.00 4.2

Heur-AT 91.64 ± 0.00 -6.55 ± 0.00 4.3 91.80 ± 0.00 -3.52 ± 0.00 4.2

DQN 90.76 ± 2.44 -6.15 ± 3.21 4.8 92.72 ± 1.11 -3.49 ± 1.10 2.2

A2C 92.80 ± 0.48 -4.09 ± 0.48 1.8 92.94 ± 0.24 -3.00 ± 0.29 1.8

SAC 89.59 ± 1.13 -9.27 ± 1.39 6.8 88.34 ± 2.07 -9.57 ± 2.57 7

Test Env. Seed 6 Test Env. Seed 7

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 91.80 ± 2.56 -4.63 ± 3.25 3.6 93.72 ± 0.78 -3.20 ± 0.94 3.2

ETS 91.99 ± 0.00 -5.12 ± 0.00 3.4 94.03 ± 0.00 -1.98 ± 0.00 2

Heur-GD 91.55 ± 0.00 -4.47 ± 0.00 5.5 88.81 ± 0.00 -8.97 ± 0.00 8

Heur-LD 87.03 ± 0.00 -10.13 ± 0.00 7.8 90.65 ± 0.00 -5.98 ± 0.00 7

Heur-AT 91.55 ± 0.00 -4.47 ± 0.00 5.5 93.08 ± 0.00 -2.95 ± 0.00 4.6

DQN 93.32 ± 1.33 -2.59 ± 1.27 3 93.17 ± 0.56 -2.79 ± 0.55 4.8

A2C 91.69 ± 1.50 -4.35 ± 1.87 4.4 93.32 ± 0.57 -2.46 ± 0.59 4.2

SAC 92.24 ± 4.51 -6.43 ± 5.65 2.8 94.94 ± 1.41 -2.95 ± 1.76 2.2

Test Env. Seed 8 Test Env. Seed 9

Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 92.62 ± 0.30 -4.15 ± 0.61 4.8 92.48 ± 1.34 -5.36 ± 1.50 3

ETS 89.04 ± 0.00 -8.36 ± 0.00 6.4 94.29 ± 0.00 -3.55 ± 0.00 1.6

Heur-GD 93.56 ± 0.00 -2.86 ± 0.00 3.1 79.09 ± 0.00 -22.95 ± 0.00 6.8

Heur-LD 88.21 ± 0.00 -9.54 ± 0.00 7.4 79.09 ± 0.00 -22.95 ± 0.00 6.8

Heur-AT 93.56 ± 0.00 -2.86 ± 0.00 3.1 79.09 ± 0.00 -22.95 ± 0.00 6.8

DQN 93.12 ± 1.13 -3.20 ± 1.38 3.6 84.95 ± 4.36 -15.42 ± 5.12 5.6

A2C 93.92 ± 0.00 -2.53 ± 0.00 1.4 90.87 ± 0.17 -8.58 ± 0.22 3.8

SAC 89.26 ± 2.77 -11.90 ± 3.45 6.2 94.55 ± 2.28 -5.55 ± 2.87 1.6
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Table 23: Two-tailed Welch’s t-test results for Split notMNIST in New Dataset experiment.

Test Env. Seed 0 Test Env. Seed 1 Test Env. Seed 2 Test Env. Seed 3 Test Env. Seed 4

Methods t p t p t p t p t p

DQN vs Random -1.32 0.226 2.81 0.023 2.64 0.033 2.22 0.083 -0.41 0.692

DQN vs ETS -0.36 0.739 3.08 0.037 0.68 0.535 8.68 0.001 0.20 0.849

DQN vs Heur-GD -1.20 0.296 6.06 0.004 9.21 0.001 -7.65 0.002 -0.72 0.512

DQN vs Heur-LD: -1.20 0.296 6.06 0.004 9.21 0.001 -7.65 0.002 -1.56 0.194

DQN vs Heur-At -1.20 0.296 6.06 0.004 9.21 0.001 -7.65 0.002 -0.72 0.512

DQN vs A2C -0.63 0.554 0.78 0.458 1.29 0.245 -3.88 0.005 -1.64 0.172

DQN vs SAC -4.41 0.011 -1.17 0.277 -4.93 0.007 -4.21 0.009 0.87 0.419

A2C vs Random -1.04 0.333 1.74 0.122 2.10 0.091 3.57 0.019 1.68 0.159

A2C vs ETS 0.67 0.537 1.57 0.191 -1.56 0.194 12.84 0.000 9.59 0.001

A2C vs Heur-GD -0.96 0.390 4.08 0.015 15.93 0.000 -1.58 0.189 4.86 0.008

A2C vs Heur-LD -0.96 0.390 4.08 0.015 15.93 0.000 -1.58 0.189 0.56 0.606

A2C vs Heur-At -0.96 0.390 4.08 0.015 15.93 0.000 -1.58 0.189 4.86 0.008

A2C vs DQN 0.63 0.554 -0.78 0.458 -1.29 0.245 3.88 0.005 1.64 0.172

A2C vs SAC -7.14 0.002 -1.82 0.107 -12.36 0.000 -2.30 0.068 5.23 0.003

SAC vs Random 3.77 0.019 3.85 0.005 6.50 0.003 4.44 0.003 -1.79 0.116

SAC vs ETS 59.51 0.000 4.33 0.012 30.85 0.000 7.38 0.002 -1.63 0.177

SAC vs Heur-GD 47.14 0.000 6.99 0.002 77.13 0.000 1.86 0.137 -3.63 0.022

SAC vs Heur-LD 47.14 0.000 6.99 0.002 77.13 0.000 1.86 0.137 -5.44 0.006

SAC vs Heur-At 47.14 0.000 6.99 0.002 77.13 0.000 1.86 0.137 -3.63 0.022

SAC vs DQN 4.41 0.011 1.17 0.277 4.93 0.007 4.21 0.009 -0.87 0.419

SAC vs A2C 7.14 0.002 1.82 0.107 12.36 0.000 2.30 0.068 -5.23 0.003

Test Env. Seed 5 Test Env. Seed 6 Test Env. Seed 7 Test Env. Seed 8 Test Env. Seed 9

Methods t p t p t p t p t p

DQN vs Random 1.82 0.108 1.05 0.332 -1.16 0.283 0.85 0.438 -3.30 0.023

DQN vs ETS 3.61 0.023 2.01 0.115 -3.07 0.037 7.25 0.002 -4.29 0.013

DQN vs Heur-GD 1.67 0.169 2.66 0.056 15.47 0.000 -0.78 0.479 2.69 0.055

DQN vs Heur-LD: 1.67 0.169 9.49 0.001 8.95 0.001 8.72 0.001 2.69 0.055

DQN vs Heur-At 1.67 0.169 2.66 0.056 0.32 0.767 -0.78 0.479 2.69 0.055

DQN vs A2C -0.38 0.722 1.63 0.142 -0.39 0.710 -1.43 0.226 -2.71 0.053

DQN vs SAC 3.73 0.009 0.46 0.667 -2.33 0.065 2.58 0.047 -3.90 0.008

A2C vs Random 2.56 0.060 -0.07 0.944 -0.83 0.430 8.71 0.001 -2.39 0.073

A2C vs ETS 18.34 0.000 -0.40 0.707 -2.50 0.067 inf 0.000 -39.30 0.000

A2C vs Heur-GD 9.47 0.001 0.18 0.867 15.87 0.000 inf 0.000 135.29 0.000

A2C vs Heur-LD 9.47 0.001 6.23 0.003 9.41 0.001 inf 0.000 135.29 0.000

A2C vs Heur-At 9.47 0.001 0.18 0.867 0.86 0.439 inf 0.000 135.29 0.000

A2C vs DQN 0.38 0.722 -1.63 0.142 0.39 0.710 1.43 0.226 2.71 0.053

A2C vs SAC 4.41 0.011 -0.23 0.825 -2.12 0.084 3.37 0.028 -3.22 0.032

SAC vs Random -2.15 0.068 0.17 0.869 1.51 0.181 -2.42 0.071 1.57 0.165

SAC vs ETS -2.30 0.083 0.11 0.917 1.28 0.268 0.15 0.884 0.23 0.830

SAC vs Heur-GD -3.34 0.029 0.30 0.776 8.66 0.001 -3.11 0.036 13.54 0.000

SAC vs Heur-LD -3.34 0.029 2.31 0.082 6.07 0.004 0.75 0.493 13.54 0.000

SAC vs Heur-At -3.34 0.029 0.30 0.776 2.63 0.058 -3.11 0.036 13.54 0.000

SAC vs DQN -3.73 0.009 -0.46 0.667 2.33 0.065 -2.58 0.047 3.90 0.008

SAC vs A2C -4.41 0.011 0.23 0.825 2.12 0.084 -3.37 0.028 3.22 0.032
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Figure 5: Performance progress measured in ACC (%) for all methods in the 10 test environments
for Split MNIST in the New Task Orders experiment. We plot the performance progress for
the RL algorithms and DQN for 100 evaluation steps equidistantly distributed over the training
episodes. The performance for the Random, ETS, and Heuristic scheduling baselines are plotted as
straight lines.
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Figure 6: Performance progress measured in ACC (%) for all methods in the 10 test environments
for Split CIFAR-10 in the New Task Orders experiment. We plot the performance progress for
the RL algorithms for 100 evaluation steps equidistantly distributed over the training episodes. The
performance for the Random, ETS, and Heuristic scheduling baselines are plotted as straight lines.
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Figure 7: Performance progress measured in ACC (%) for all methods in the 10 test environments
for Split FashionMNIST in the New Dataset experiment. We plot the performance progress for
the RL algorithms for 100 evaluation steps equidistantly distributed over the training episodes. The
performance for the Random, ETS, and Heuristic scheduling baselines are plotted as straight lines.
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Figure 8: Performance progress measured in ACC (%) for all methods in the 10 test environments
for Split notMNIST in the New Dataset experiment. We plot the performance progress for the
RL algorithms for 100 evaluation steps equidistantly distributed over the training episodes. The
performance for the Random, ETS, and Heuristic scheduling baselines are plotted as straight lines.
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